Open Access
Issue |
E3S Web Conf.
Volume 583, 2024
Innovative Technologies for Environmental Science and Energetics (ITESE-2024)
|
|
---|---|---|
Article Number | 07015 | |
Number of page(s) | 10 | |
Section | Smart Electricity Grids, Electricity and Magnetism | |
DOI | https://doi.org/10.1051/e3sconf/202458307015 | |
Published online | 25 October 2024 |
- V.M. Tat’yankin, I.S. Dyubko, Yugra State University Bulletin 11. 2. 94-98 (2015). doi:10.17816/byusu201511294-98 [CrossRef] [Google Scholar]
- P Galeone(2017) Analysis of Dropout P. Galeone’s blog https://pgaleone.eu/deep-learning/regularization/2017/01/10/anaysis-of-dropout/#fnref:1. Accessed 10 Jan 2017. [Google Scholar]
- X. Ying,Journal of Physics: Conference Series 1168, 2, 022022 (2019) [CrossRef] [Google Scholar]
- A.V. Parasich, V.A. Parasich, I.V. Parasich,Information and Control Systems 4, 61–70 (2021). doi:10.31799/1684-8853-2021-4-61-70 [CrossRef] [Google Scholar]
- S.B. Kotsiantis, I. Zaharakis, P. Pintelas, Emerging Artificial Intelligence Applications in Computer Engineering 160, 1, 3–24 (2007) [Google Scholar]
- A. Krizhevsky, I. Sutskever, G.E. Hinton, Communications of the ACM 60, 6, 84–9 0 (2017) [CrossRef] [Google Scholar]
- R. Zazo, T.N. Sainath, G. Simko, C. Parada,Feature learning with raw-waveform CLDNNs for voice activity detection. 17th Annual Conference of the International Speech Communication Association, San Francisco, CA, USA, 8–12 September 2016. San Francisco, pp. 3668–3672 (2016). https://doi.org/10.21437/Interspeech.2016-268 [Google Scholar]
- T.Y.Lin, P.Goyal, R.Girshick, K.He, P. Dollár,Focal loss for dense object detection. Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017) [Google Scholar]
- N.V.Chawla, K.W.Bowyer, L.O.Hall, W.P. Kegelmeyer,Journal of Artificial Intelligence Research 16, 321–357 (2002) [CrossRef] [Google Scholar]
- H.He, Y.Bai, E.A.Garcia, S. Li,ADASYN: Adaptive synthetic sampling approach for imbalanced learning. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008) [Google Scholar]
- R.Longadge, S. Dongre,Class imbalance problem in data mining review. arXiv preprint arXiv:1305.1707, 2013. [Google Scholar]
- N.Japkowicz, S. Stephen, Intelligent Data Analysis 6, 5, 429–449 (2002) [CrossRef] [Google Scholar]
- M.Buda, A., Maki,M.A. Mazurowski, Neural Networks 106, 249–259 (2018) [CrossRef] [Google Scholar]
- J.M.Johnson, T.M. Khoshgoftaar, Journal of Big Data 6, 1, 1–54 (2019) [CrossRef] [Google Scholar]
- X.Y.Liu, J.Wu, Z.H. Zhou, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39, 2, 539–550 (2008) [Google Scholar]
- M.W. Browne, Journal of Mathematical Psychology 44, 1, 108–132 (2000) [CrossRef] [PubMed] [Google Scholar]
- X.Zhang, J. Wu,Denoising deep neural networks-based voice activity detection. International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. Vancouver, pp. 853–857 (2013).https://doi.org/10.1109/ICASSP.2013.6637769 [Google Scholar]
- N.Ryant, M.Liberman, J. Yuan,Speech activity detection on youtube using deep neural networks. 14thAnnual Conference of the International Speech Communication Association, Lyon, France, 25–29 August 2013. Lyon, pp. 728–731 (2013) [Google Scholar]
- T.Hughes, K. Mierle,Recurrent neural networks for voice activity detection. International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. Vancouver, pp. 7378–7382 (2013) https://doi.org/10.1109/ICASSP.2013.6639096 [Google Scholar]
- F.Eyben, F.Weninger, S.Squartini, B. Schuller,Real-life voice activity detection with LSTM Recurrent Neural Networks and an application to Hollywood movies. International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. Vancouver, pp. 483–487 (2013) https://doi.org/10.1109/ICASSP.2013.6637694 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.