Open Access
Issue |
E3S Web Conf.
Volume 583, 2024
Innovative Technologies for Environmental Science and Energetics (ITESE-2024)
|
|
---|---|---|
Article Number | 07014 | |
Number of page(s) | 9 | |
Section | Smart Electricity Grids, Electricity and Magnetism | |
DOI | https://doi.org/10.1051/e3sconf/202458307014 | |
Published online | 25 October 2024 |
- Ghanmi A., Alzumi H., Zeddini N., Electronic Research Archive, 2024, 32(6): 3742-3757. Doi: 10.3934/era.2024170 [CrossRef] [Google Scholar]
- Ermakov S.M., Pogosian A.A., On solving stochastic differential equations, Monte Carlo Methods and Applications, 2019, v.25, № 2, p.155-161. [CrossRef] [Google Scholar]
- Ermakov S. M., Surovikina T. O., Bulletin of St. Petersburg University. Mathematics. Mechanics. Astronomy 9 (67), no. 1, 23–36 (2022), https://doi.org/10.21638/spbu01.2022.103 [Google Scholar]
- Ermakov S. M., Smilovitsky M. G., On the Monte Carlo method for solving large systems of linear ordinary differential equations. Bulletin of St. Petersburg University. Mathematics. Mechanics. Astronomy 8 (66), no. 1, 37-48 (2021), https://doi.org/10.21638/spbu01.2021.104 [Google Scholar]
- Elepov B.S., Mikhailov G.A., Algorithm of “walk on spheres” for the equation // Doklady mathematics, Moscow, 1973. - T.212, No. 1. pp.15-18. [Google Scholar]
- Rasulov A.S., Monte Carlo algorithms for the solution Quasi-Linear Dirichlet boundary value problems of elliptical type, Mathematics and Statistics 11(3), 592-597 (2023). https://www.doi.org/10.13189/ms.2023.110317 [CrossRef] [Google Scholar]
- Rasulov A, Raimova G, Bakoev M., Solution of some semi-linear Dirichlet problem by Monte Carlo method, 2020, AIP Conference Proceedings, https://doi.org/10.1063/5.0026724 [Google Scholar]
- Friedman A., Partial Differential Equations of Parabolic Type, Dover Publications, 2008, p. 368 [Google Scholar]
- Sipin A.S., Solution of two Dirichlet boundary value problems by the Monte Carlo method, Computational Mathematics and Mathematical Physics, Moscow, 1979. - V.19, No.2. pp.388-401. [Google Scholar]
- Mikhailov G.A., Solving the Dirichlet problem for nonlinear elliptic equations by the Monte Carlo method// Siberian Mathematical Journal - Novosibirsk, 1994. - T.35, No. 5. pp.1085-1093. [Google Scholar]
- Shiryaev A.N., Probability, Springer New York, NY, 1996, p. 624. [Google Scholar]
- Simonov N.A., Algorithms for random walk over spheres for solving a mixed boundary value problem and the Neumann problem// Numerical Analysis and Applications, Novosibirsk, 2007. - T. 10, No.2, pp. 209-220. [Google Scholar]
- Rasulov A.S., In the book Recent Advances in Monte Carlo Methods, A New Monte Carlo Approach for the Solution of Semi-Linear Neumann Boundary Value Problem, 2024, Intech open, DOI: 10.5772/intechopen.1002452 [Google Scholar]
- Rasulov A., Raimova G., Hasanova D., Monte Carlo solution of heat conductivity problems with quadratic nonlinearity on the boundary of domain. E3S Web of Conferences ETESD-II 2023 02, 060 (2023), https://doi.org/10.1051/e3sconf/202344306002 [Google Scholar]
- Haoyu L., Russer J. A., Wenquan C. and Russer P., A Monte Carlo method approach for the solution of the Helmholtz equation, Asia-Pacific Microwave Conference (APMC), Nanjing, China, 2015, pp. 1-3, doi: 10.1109/APMC.2015.7413522. [Google Scholar]
- Kraszewski M., Plucinski J., Application of the Monte Carlo algorithm for solving volume integral equation in light scattering simulations, Optica Applicata, Vol. L, No. 1, 2020, DOI: 10.37190/oa200101 [Google Scholar]
- Ma D., Zhang Z., A quasi Monte Carlo-based model reduction method for solving Helmholtz equation in random media, Communications on Analysis and Computation, 2023, Volume 1, Issue 3: 297-320. Doi: 10.3934/cac.2023015 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.