Open Access
Issue
E3S Web Conf.
Volume 584, 2024
Rudenko International Conference “Methodological Problems in Reliability Study of Large Energy Systems” (RSES 2024)
Article Number 01024
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202458401024
Published online 06 November 2024
  1. Kovalev G.F., Lebedeva L.M. Model for assessing the reliability of electric power systems in longterm planning of their operation Electricity. - 2000. - 111. - P. 17-24. (in Russian) [Google Scholar]
  2. G. F. Kovalev. Reliability of electric power systems / G. F. Kovalev, L. M. Lebedeva; ed. N. I. Voropai. - Novosibirsk:Nauka, 2015. - 224 p. (in Russian) [Google Scholar]
  3. Kovalev G.F., Lebedeva L.M. Complex of models for optimization of design state modes in assessing the reliability of electric power systems. Irkutsk:ISEM SB RAS, 2000, 74 p. (in Russian) [Google Scholar]
  4. Review of the current status of tools and techniques for risk-based and probabilistic planning in power systems, Working Group 601 of Study Committee C4 //International Conference on Large High Voltage Electric Systems. March. 2010 [Google Scholar]
  5. Fernandez Blanco Carramolino, R., Careri, F., Kavvadias, K., Hidalgo Gonzalez, I., Zucker, A. and Peteves, E., Systematic mapping of power system models:Expert survey, EUR 28875 EN, Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-76462-2, DOI: 10.2760/422399, JRC109123. [Google Scholar]
  6. Antonopoulos G.; Chondrogiannis S.; Kanellopoulos K.; Papaioannou I.; Spisto A.; Efthimiadis T.; Fulli G., Assessment of underlying capacity mechanism studies for Greece, EUR 28611 EN, Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-7968878-2, DOI: 10.2760/51331, JRC106307 [Google Scholar]
  7. RTE Antares, Antares Optimization problems formulation, URL:https://antares.rte-france.com [Google Scholar]
  8. A. Gaikwad, S. Agarwal, K. Carden, N. Wintermantel, S. Meliopoulos, M. Kumbale, A Study on Probabilistic Risk Assessment for Transmission and Other Resource Planning, Electric Power Research Institute For EISPC and NARUC (NARUC-2013-RFP027-DE0316), 2015. [Google Scholar]
  9. URREGO AGUDELO Lilliam, A novel method for the Approximation of risk of Blackout in operational conditions, Laboratoire Image- Signaux et Systèmes Intelligents / LISSI - EA 3956 (laboratoire), 2016 [Google Scholar]
  10. Milorad Papic, Survey of Tools for Risk Assessment of Cascading Outages, IEEE GM, 2011 [Google Scholar]
  11. Ying-Yi Hong, Lun-Hui Lee Reliability assessment of generation and transmission systems using fault-tree analysis, Energy Conversion and Management 50 (2009) 2810-2817. [Google Scholar]
  12. Siemens AG and Siemens Industry, Inc., Model Management Module for PSS®E, 2020 [Google Scholar]
  13. PSR - Energy Consulting and Analytics, OPTGEN User Manual, Version 7.4, 2019 [Google Scholar]
  14. ENTSO-E, Mid-term Adequacy Forecast 2018, Appendix 1:Methodology and Detailed Results, 2018 [Google Scholar]
  15. PLEXOS Market Simulation Software, URL:https://energyexemplar.com/solutions/plexos/ [Google Scholar]
  16. Kelvin Chu, MARS Multi-Area Reliability Simulation, EOP - On Demand Feature, General Electric Company, 2014 [Google Scholar]
  17. Panida Jirutitijaroen, Chanan Singh, Reliability and Cost trade-off in Multi-Area Power System Generation Expansion Using Dynamic Programming and Global Decomposition, IEEE Transactions on power systems, Vol 21, No 3, August 2006 [Google Scholar]
  18. J. McCalley, Module PE.PAS.U21.5 Multiarea reliability analysis // Electrical & Computer Engineering, Iowa State University, USA, - 81p. [Google Scholar]
  19. Simulate security-constrained unit commitment and economic dispatch in large-scale transmission networks // ABB GridView, 2016. [Google Scholar]
  20. Pandapower, URL:https://pandapower.readthedocs.io/en/v1.4.3/powerflow/opf.html [Google Scholar]
  21. Kim, Seong-Cheol & Salkuti, Surender Reddy. (2019). Optimal power flow based congestion management using enhanced genetic algorithms. International Journal of Electrical and Computer Engineering (IJECE). 9. 875. DOI: 10.11591/ijece.v9i2.pp875-883. [CrossRef] [Google Scholar]
  22. Nusair, K.; Alasali, F. Optimal Power Flow Management System for a Power Network with Stochastic Renewable Energy Resources Using Golden Ratio Optimization Method. Energies 2020, 13, 3671. https://doi.org/10.3390/en13143671 [CrossRef] [Google Scholar]
  23. Telyatnik, Andrey & Vaskovskaya, Tatiana. (2019). Acceleration of the method of sequential quadratic programming in the problem of optimization of steady-state modes of EPS. Bulletin of the Russian Academy of Sciences. Power Engineering. 3-15. DOI: 10.1134/S0002331019040149. (in Russian) [Google Scholar]
  24. Iakubovskii D.V. “Analysis of models for minimizing power deficit in the adequacy assessment of electric power systems” // System research in energy / Works of young scientists of the ISEM SB RAS, Issue 48. - Irkutsk:ISEM SB RAS, 2017. - 131 p. (in Russian) [Google Scholar]
  25. Iakubovskii D.V., Krupenev D.S., Boyarkin D.A. Model for minimizing the power deficit of electric power systems taking into account restrictions on controlled cross-sections Data Analysis and Processing Systems. - 2021. - No. 2 (82). - P. 95120. - DOI: 10.17212/2782-2001-2021-2-95-120. (in Russian) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.