Open Access
Issue |
E3S Web Conf.
Volume 585, 2024
5th International Conference on Environmental Design and Health (ICED2024)
|
|
---|---|---|
Article Number | 06001 | |
Number of page(s) | 27 | |
Section | Health | |
DOI | https://doi.org/10.1051/e3sconf/202458506001 | |
Published online | 07 November 2024 |
- NOAA National Centers for Environmental Information, Monthly Global Climate Report for Annual 2021, published online January 2022, retrieved on February 24, 2023 from https://www.ncei.noaa.gov/access/monitoring/month ly-report/global/202113. [Google Scholar]
- IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change H.- O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.).. Cambridge University Press. In Press. [Google Scholar]
- M. Romanello, A. McGushin, C. Di Napoli, P. Drummond, N. Hughes, L. Jamart, H. Kennard, P. Lampard, B. Solano Rodriguez, N. Arnell, S. Ayeb-Karlsson, K. Belesova, W. Cai, D. Campbell-Lendrum, S. Capstick, J. Chambers, L. Chu, L. Ciampi, C. Dalin, N. Dasandi, S. Dasgupta, M. Davies, P. Dominguez-Salas, R. Dubrow, K.L. Ebi, M. Eckelman, P. Ekins et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet, 398 (10311), 1619-1662 (2021). [CrossRef] [PubMed] [Google Scholar]
- Y. Wang, Z. Ding, C. Deng, P. Guo, Y. You, L. Li, Y. Wang, & Q. Zhang. Years of life lost with premature death due to ambient temperatures in a southwest plateau region of China: A cause-specific and individual characteristics stratified mortality study. International Journal of Biometeorology, 64(8), 1333–1341 (2020). [CrossRef] [PubMed] [Google Scholar]
- S. Ai, J. Qi, J. Liu, L. Wang, P. Yin, R. Li, C. Wang, H. Lin, & M. Zhou. Years of life lost and life expectancy attributable to ambient temperature: A time series study in 93 Chinese cities. Environmental Research Letters, 16 (6) (2021). [Google Scholar]
- S. Hajat. Health effects of milder winters: a review of evidence from the United Kingdom. Environmental Health, 16, 109 (2017). [CrossRef] [Google Scholar]
- H.R. Salve, R. Parthasarathy, A. Krishnan & D. Pattanaik. Impact of ambient air temperature on human health in India. Reviews on Environmental Health, 33 (4), 433-439 (2018). [CrossRef] [PubMed] [Google Scholar]
- C.J. Gronlund, K.P. Sullivan, Y. Kefelegn, L. Cameron, & M.S. O’Neill. Climate change and temperature extremes: A review of heat- and cold- related morbidity and mortality concerns of municipalities. Maturitas, 114, 54–59 (2018). [CrossRef] [PubMed] [Google Scholar]
- E.Y.Y. Chan, J.Y. Ho, H.H.Y. Hung, S. Liu, & H.C.Y. Lam. Health impact of climate change in cities of middle-income countries: The case of China. British Medical Bulletin, 130 (1), 5–24 (2019). [CrossRef] [PubMed] [Google Scholar]
- E.A. Grigorieva, & B.A. Revich. Health risks to the Russian population from temperature extremes at the beginning of the XXI century. Atmosphere, 12(10): 1331 (2021). [CrossRef] [Google Scholar]
- A. Dimitrova, V. Ingole, X. Basagaña, O. Ranzani, C. Milà, J. Ballester, & C. Tonne. Association between ambient temperature and heat waves with mortality in South Asia: Systematic review and meta-analysis. Environment International, 146, 106170 (2021). [CrossRef] [Google Scholar]
- T. Perry, U. Obolski, & C. Peretz. The Association Between High Ambient Temperature and Mortality in the Mediterranean Basin: A Systematic Review and Meta-Analysis. Current Environmental Health Reports 10(1), 61-71 (2022). [CrossRef] [PubMed] [Google Scholar]
- R. Basu, & J.M. Samet. Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiologic Reviews, 24(2), 190-202 (2002). [CrossRef] [PubMed] [Google Scholar]
- R. Basu. High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environmental Health: A Global Access Science Source, 8(1-13) (2009). [Google Scholar]
- W.L. Kenney, D.H. Craighead, & L.M. Alexander. Heat waves aging and human cardiovascular health. Medicine and Science in Sports and Exercise, 46(10), 1891–1899 (2014). [CrossRef] [PubMed] [Google Scholar]
- J. Calleja-Agius, K. England, & N. Calleja. The effect of global warming on mortality. Early Human Development, 155: 105222 (2021). [CrossRef] [Google Scholar]
- K. Hu, X. Yang, J. Zhong, F. Fei, & J. Qi. Spatially explicit mapping of heat health risk utilizing environmental and socioeconomic data. Environmental Science & Technology, 51(3), 1498–1507 (2017). [CrossRef] [PubMed] [Google Scholar]
- K.V. Wong, A. Paddon, & A. Jimenez. Review of World Urban Heat Islands: Many Linked to Increased Mortality. Journal of Energy Resources Technology, Transactions of the ASME, 135(2) (2013). [Google Scholar]
- A. Bouchama, M. Dehbi, G. Mohamed, F. Matthies, M. Shoukri, & B. Menne. Prognostic factors in heat wave-related deaths: A meta-analysis. Archives of Internal Medicine, 167(20), 2170–2176 (2007). [CrossRef] [PubMed] [Google Scholar]
- J. Kravchenko, A.P. Abernethy, M. Fawzy, & H.K. Lyerly. Minimization of heatwave morbidity and mortality. American Journal of Preventive Medicine, 44(3), 274–282 (2013). [CrossRef] [Google Scholar]
- J. Sexton, C. Andrews, S. Carruthers, S. Kumar, V. Flenady, & S. Lieske. Systematic review of ambient temperature exposure during pregnancy and stillbirth: Methods and evidence. Environmental Research, 197: 111037 (2021). [CrossRef] [Google Scholar]
- A. Bunker, J. Wildenhain, A. Vandenbergh, N. Henschke, J. Rocklöv, S. Hajat, & R. Sauerborn. Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Meta-analysis of Epidemiological Evidence. EBioMedicine, 6, 258–268 (2016). [CrossRef] [Google Scholar]
- D. Oudin Åström, F. Bertil, & R. Joacim. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas, 69(2), 99–105 (2011). [CrossRef] [Google Scholar]
- P.L. Kinney, M.S. O’Neill, M.L. Bell, & J. Schwartz. Approaches for estimating effects of climate change on heat-related deaths: Challenges and opportunities. Environmental Science & Policy, 11(1), 87–96 (2008). [CrossRef] [Google Scholar]
- K. Arbuthnott, S. Hajat, C. Heaviside, & S. Vardoulakis. Changes in population susceptibility to heat and cold over time: Assessing adaptation to climate change. Environmental Health: A Global Access Science Source, 15 (73-93) (2016). [Google Scholar]
- T. Benmarhnia, S. Deguen, J.S. Kaufman, & A. Smargiassi. Vulnerability to heat-related mortality: A systematic review, meta-analysis, and meta- regression analysis. Epidemiology, 26(6), 781–793 (2015). [CrossRef] [PubMed] [Google Scholar]
- W. Yu, Y. Guo, X. Ye, X. Wang, C. Huang, X. Pan, & S. Tong. The effect of various temperature indicators on different mortality categories in a subtropical city of Brisbane, Australia. Science of the Total Environment, 409(18), 3431–3437 (2011) [CrossRef] [Google Scholar]
- A. Gasparrini, Y. Guo, & M. Hashizume. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Environnement, Risques et Santé, 14(6), 464–465 (2015). [Google Scholar]
- Q. Zhao, Y. Guo, T. Ye, A. Gasparrini, S. Tong, A. Overcenco, A. Urban, A. Schneider, A. Entezari et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: A three-stage modelling study. The Lancet Planetary Health, 5(7), e415–e425 (2021). [CrossRef] [Google Scholar]
- F. Sera, B. Armstrong, A. Tobias, A.M. Vicedo-Cabrera, C. Åström, M.B. Liu, et al. How urban characteristics affect vulnerability to heat and cold: a multicountry analysis. International Journal of Epidemiology, 48 (4), 1101–1112 (2019). [CrossRef] [PubMed] [Google Scholar]
- J. Song, R. Pan, W. Yi, Q. Wei, W. Qin, S. Song, C. Tang, Y. He, X. Liu, J. Cheng, & H. Su. Ambient high temperature exposure and global disease burden during 1990–2019: An analysis of the Global Burden of Disease Study 2019. Science of the Total Environment, 787: 147540 (2021). [CrossRef] [Google Scholar]
- P. Vaneckova, P.J. Beggs, R.J. de Dear, & K.W.J. McCracken. Effect of temperature on mortality during the six warmer months in Sydney, Australia, between 1993 and 2004. Environmental Research, 108(3), 361–369 (2008). [Google Scholar]
- P. Vaneckova, G. Neville, V. Tippett, P. Aitken, G. Fitzgerald, & S. Tong. Do biometeorological indices improve modeling outcomes of heat-related mortality? Journal of Applied Meteorology and Climatology, 50(6), 1165–1176 (2011). [CrossRef] [Google Scholar]
- M. Loughnan, N. Nicholls, & N. Tapper. Mortality- temperature thresholds for ten major population centres in rural Victoria, Australia. Health and Place, 16(6), 1287–1290 (2010). [CrossRef] [Google Scholar]
- L.A. Wilson, G. Gerard Morgan, I.C. Hanigan, F.H. Johnston, H. Abu-Rayya, R. Broome, C. Gaskin, & B. Jalaludin. The impact of heat on mortality and morbidity in the Greater Metropolitan Sydney Region: A case crossover analysis. Environmental Health: A Global Access Science Source, 12(1) (2013). [Google Scholar]
- J. Y. Chung, Y. Honda, Y. C. Hong, X. C. Pan, Y. L. Guo, & H. Kim Ambient temperature and mortality: An international study in four capital cities of East Asia. Science of the Total Environment, 408(2), 390–396 (2009). [CrossRef] [Google Scholar]
- M. Li, M. Zhou, X. Zhang, J. Huang, L. Bai, S. Sang, J. Zhang & Q. Liu Impact of temperature on non- accidental deaths and cause-specific mortality in four districts of Jinan. Zhonghua Liu Xing Bing Xue Za Zhi = Zhonghua Liuxingbingxue Zazhi, 35(6), 684–688 (2014). [Google Scholar]
- C. Li & H. Gu Climate change and mortality evolution in China. Journal of Environmental Management, 267, 110622 (2020). [Google Scholar]
- S. Zafeiratou, A. Analitis, D. Founda, C. Giannakopoulos, K. V. Varotsos, P. Sismanidis, I. Keramitsoglou & K. Katsouyanni Spatial variability in the effect of high ambient temperature on mortality: An analysis at municipality level within the greater Athens area. International Journal of Environmental Research and Public Health, 16(19), 3689 (2019). [CrossRef] [Google Scholar]
- N. Rapsomanikis, N. Gizani & E. Zervas Regional analysis of climate variability in Greece based on six temperature variability indicators – A cluster analysis. E3S Web of Conferences, 436, 02014 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
- K. Zacharaki, A. Tseliou, N. Rapsomanikis & E. Zervas New temperature indices for the estimation of temperature variability. Application in Athens’s greater area. IOP Conference Series: Earth and Environmental Science, 1123(1), 012018 (2022). [Google Scholar]
- K. Zacharaki, A. Tseliou, N. Rapsomanikis & E. Zervas Use of new indices for the quantification of climate change based on air temperature variability. IOP Conference Series: Earth and Environmental Science, 1123(1), 012017 (2022). [CrossRef] [Google Scholar]
- T. Kalyvas, S. Manika & E. Zervas Basic principles of the TEVY index for the quantification of temperature variability within a year. IOP Conference Series: Earth and Environmental Science, 899(1), 012023 (2021). [CrossRef] [Google Scholar]
- Y. Wei, A. S. Tiwari, L. Li, B. Solanki, J. Sarkar, D. Mavalankar & J. Schwartz Assessing mortality risk attributable to high ambient temperatures in Ahmedabad, 1987 to 2017. Environmental Research, 198, 111232 (2021). [CrossRef] [Google Scholar]
- Y. Honda, M. Ono, A. Sasaki & I. Uchiyama Relationship between daily high temperature and mortality in Kyushu, Japan. Nippon Koshu Eisei Zasshi. Japanese Journal of Public Health, 42(4), 260–268 (1995). [Google Scholar]
- J. Bettaieb, A. Toumi, K. Leffondre, S. Chlif & A. B. Salah High temperature effect on daily all-cause mortality in Tunis 2005–2007. Revue d’épidémiologie et de santé publique, 68(1), 37–43 (2020). [CrossRef] [Google Scholar]
- S. Heo, E. Lee, B. Y. Kwon, S. Lee, K. H. Jo & J. Kim Long-term changes in the heat-mortality relationship according to heterogeneous regional climate: A time-series study in South Korea. BMJ Open, 6(8), e011786 (2016). [CrossRef] [Google Scholar]
- E. Y. Y. Chan, W. B. Goggins, J. J. Kim & S. M. Griffiths A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. Journal of Epidemiology and Community Health, 66(4), 322–327 (2012). [CrossRef] [PubMed] [Google Scholar]
- B. S. Djurdjev, D. Arsenović & S. Savić Temperature-related mortality in Belgrade in the period 1888–2008. Acta Geographica Slovenica, 52(2), 385–401 (2012). [CrossRef] [Google Scholar]
- X. Basagaña, C. Sartini, J. Barrera-Gómez, P. Dadvand, J. Cunillera, B. Ostro, J. Sunyer & M. Medina-Ramón Heat waves and cause-specific mortality at all ages. Epidemiology, 22(6), 765–772 (2011). [CrossRef] [PubMed] [Google Scholar]
- S. Pattenden, B. Armstrong, A. Milojevic, M. R. Heal, Z. Chalabi, R. Doherty, B. Barratt, R. S. Kovats & P. Wilkinson Ozone, heat and mortality: Acute effects in 15 British conurbations. Occupational and Environmental Medicine, 67(10), 699–707 (2010). [CrossRef] [PubMed] [Google Scholar]
- A. Zanobetti & J. Schwartz Temperature and mortality in nine US cities. Epidemiology, 19(4), 563–570 (2008). [CrossRef] [PubMed] [Google Scholar]
- D. Hattis, Y. Ogneva-Himmelberger & S. Ratick The spatial variability of heat-related mortality in Massachusetts. Applied Geography, 33(1), 45–52 (2012). [CrossRef] [Google Scholar]
- D. B. Petitti, D. M. Hondula, S. Yang, S. L. Harlan & G. Chowell Multiple trigger points for quantifying heat-health impacts: New evidence from a hot climate. Environmental Health Perspectives, 124(2), 176–183 (2016). [CrossRef] [PubMed] [Google Scholar]
- M. L. Bell, M. S. O’Neill, N. Ranjit, V. H. Borja-Aburto, L. A. Cifuentes & N. C. Gouveia Vulnerability to heat-related mortality in Latin America: A case-crossover study in São Paulo, Brazil, Santiago, Chile and Mexico City, Mexico. International Journal of Epidemiology, 37(4), 796–804 (2008). [CrossRef] [PubMed] [Google Scholar]
- M. Stafoggia, F. Forastiere, D. Agostini, A. Biggeri, L. Bisanti, E. Cadum, N. Caranci, F. De’Donato, S. De Lisio, M. De Maria, P. Michelozzi, R. Miglio, P. Pandolfi, S. Picciotto, M. Rognoni, A. Russo, C. Scarnato & C. A. Perucci Vulnerability to heat- related mortality: A multicity, population-based, case-crossover analysis. Epidemiology, 17(3), 315–323 (2006). Scopus. [CrossRef] [PubMed] [Google Scholar]
- J. Hart Air temperature and death rates in the continental U.S., 1968–2013. Climate, 3(4), 1053–1066 (2015). https://doi.org/10.3390/cli3041053 [Google Scholar]
- J. Hart Air temperature and death rates in Texas, 1968–2013: A brief research note. Epidemiology Reports (2015b). [Google Scholar]
- A. E. Kunst, C. W. N. Looman & J. P. Mackenbach Outdoor air temperature and mortality in the Netherlands: A time-series analysis. American Journal of Epidemiology, 137(3), 331–341 (1993). [CrossRef] [PubMed] [Google Scholar]
- S. Pattenden, B. Nikiforov & B. G. Armstrong Mortality and temperature in Sofia and London. Journal of Epidemiology and Community Health, 57(8), 628–633 (2003). [CrossRef] [PubMed] [Google Scholar]
- M. Medina-Ramón & J. Schwartz Temperature, temperature extremes, and mortality: A study of acclimatisation and effect modification in 50 US cities. Occupational and Environmental Medicine, 64(12), 827–833 (2007). [CrossRef] [PubMed] [Google Scholar]
- A. J. McMichael, P. Wilkinson, R. S. Kovats, S. Pattenden, S. Hajat, B. Armstrong, N. Vajanapoom, E. M. Niciu, H. Mahomed, C. Kingkeow, M. Kosnik, M. S. O’Neill, I. Romieu, M. Ramirez-Aguilar, M. L. Barreto, N. Gouveia & B. Nikiforov International study of temperature, heat and urban mortality: The ‗ISOTHURM’ project. International Journal of Epidemiology, 37(5), 1121–1131 (2008). [CrossRef] [PubMed] [Google Scholar]
- J. Y. Son, J. T. Lee, G. B. Anderson & M. L. Bell Vulnerability to temperature-related mortality in Seoul, Korea. Environmental Research Letters, 6(3), 034027 (2011). [CrossRef] [Google Scholar]
- Q. H. Yan, Y. H. Zhang, W. J. Ma, Y. J. Xu, X. J. Xu, Q. M. Cai, B. Pan & S. Q. Zeng Association between temperature and daily mortality in Guangzhou, 2006-2009: A time-series study. Zhonghua Liu Xing Bing Xue Za Zhi = Zhonghua Liuxingbingxue Zazhi, 32(1), 9–12 (2011). [Google Scholar]
- Y. Guo, K. Punnasiri & S. Tong Effects of temperature on mortality in Chiang Mai city, Thailand: A time series study. Environmental Health: A Global Access Science Source, 11(1), 36 (2012). [Google Scholar]
- J. Yang, H. Z. Liu, C. Q. Ou, G. Z. Lin, Q. Zhou, G. C. Shen, P. Y. Chen & Y. Guo Global climate change: Impact of diurnal temperature range on mortality in Guangzhou, China. Environmental Pollution, 175, 131–136 (2013). [CrossRef] [Google Scholar]
- M. H. Li Trends and Seasonal Variations of Climate, Air Quality, and Mortality in Three Major Cities in Taiwan (p. 213) (2018). [Google Scholar]
- W. Yi & A. P. C. Chan Effects of temperature on mortality in Hong Kong: A time series analysis. International Journal of Biometeorology, 59(7), 927–936 (2015). [CrossRef] [PubMed] [Google Scholar]
- Y. Zhang, C. Li, R. Feng, Y. Zhu, K. Wu, X. Tan & L. Ma The short-term effect of ambient temperature on mortality in Wuhan, China: A time-series study using a distributed lag non-linear model. International Journal of Environmental Research and Public Health, 13(7), 722 (2016a). [Google Scholar]
- Y. Zhang, C. Yu, J. Bao et al. Impact of temperature on mortality in Hubei, China: a multi-county time series analysis. Scientific Reports, 7, 45093 (2017). [Google Scholar]
- K. Hu, Y. Guo, S. Hochrainer-Stigler, W. Liu, L. See, X. Yang, J. Zhong, F. Fei, F. Chen, Y. Zhang, Q. Zhao, G. Chen, Q. Chen, Y. Zhang, T. Ye, L. Ma, S. Li & J. Qi Evidence for urban–rural disparity in temperature–mortality relationships in Zhejiang Province, China. Environmental Health Perspectives, 127(3), 037002 (2019a). [CrossRef] [PubMed] [Google Scholar]
- W. E. Péres, A. F. S. Ribeiro, A. Russo & B. Nunes The association between air temperature and mortality in two Brazilian health regions. Climate, 8(1), 16 (2020). [CrossRef] [Google Scholar]
- C. Demoury, K. De Troeyer, F. Berete, R. Aerts, B. Van Schaeybroeck, J. Van der Heyden & E. M. De Clercq Association between Temperature and Natural Mortality in Belgium: Effect Modification by Individual Characteristics and Residential Environment. Science of the Total Environment, 851, 158336 (2022a). [CrossRef] [Google Scholar]
- C. R. Demoury, R. Aerts, B. Vandeninden, B. Van Schaeybroeck & E. M. De Clercq Impact of Short- Term Exposure to Extreme Temperatures on Mortality: A Multi-City Study in Belgium. International Journal of Environmental Research and Public Health, 19(7), 3763 (2022b). [CrossRef] [Google Scholar]
- K. Wan, Z. Feng, S. Hajat & R. M. Doherty Temperature-Related Mortality and Associated Vulnerabilities: Evidence from Scotland Using Extended Time-Series Datasets. Environmental Health: A Global Access Science Source, 21(1), 65 (2022). [Google Scholar]
- C. Q. Ou, Y. F. Song, J. Yang, P. Y. K. Chau, L. Yang, P. Y. Chen & C. M. Wong Excess Winter Mortality and Cold Temperatures in a Subtropical City, Guangzhou, China. PLoS ONE, 8(10), e77150 (2013). [CrossRef] [Google Scholar]
- R. Chen, P. Yin, L. Wang, C. Liu, Y. Niu, W. Wang, Y. Jiang, Y. Liu, J. Liu, J. Qi, J. You, H. Kan & M. Zhou Association between ambient temperature and mortality risk and burden: Time series study in 272 main Chinese cities. BMJ (Online), 363, (2018). [Google Scholar]
- C. Deng, Z. Ding, L. Li, Y. Wang, P. Guo, S. Yang, J. Liu, Y. Wang & Q. Zhang Burden of non- accidental mortality attributable to ambient temperatures: A time series study in a high plateau area of southwest China. BMJ Open, 9(2), e024708 (2019). [CrossRef] [Google Scholar]
- X. Xu, Z. Chen, X. Huo, C. Wang, N. Li, X. Meng, Q. Wang, Q. Liu, B. P. Bi & J. Li The effects of temperature on human mortality in a Chinese city: Burden of disease calculation, attributable risk exploration, and vulnerability identification. International Journal of Biometeorology, 63(10), 1319–1329 (2019). [CrossRef] [PubMed] [Google Scholar]
- X. Bi, C. Wu, C. Wang, Y. Wang, X. Wang, C. Song, J. Li & C. Fu Impacts of Air Temperature and Its Extremes on Human Mortality in Shanghai, China. Urban Climate, 41, 101072 (2022). [CrossRef] [Google Scholar]
- J. Liu, T. Liu, K. G. Burkart, H. Wang, G. He, J. Hu, J. Xiao et al. Mortality burden attributable to high and low ambient temperatures in China and its provinces: Results from the Global Burden of Disease Study 2019. The Lancet Regional Health - Western Pacific, 24 (2022). [Google Scholar]
- V. Ingole, S. C. Sheridan, S. Juvekar, H. Achebak & P. Moraga Mortality risk attributable to high and low ambient temperature in Pune City, India: A time series analysis from 2004 to 2012. Environmental Research, 204: 112304 (2022). [Google Scholar]
- K. Psistaki, A. K. Paschalidou & G. McGregor Weather patterns and all-cause mortality in England, UK. International Journal of Biometeorology, 64(1), 123–136 (2020). [CrossRef] [PubMed] [Google Scholar]
- Y. K. Lin, A. T. Maharani, F. T. Chang & Y. C. Wang Mortality and morbidity associated with ambient temperatures in Taiwan. Science of the Total Environment, 651, 210–217 (2019). [CrossRef] [Google Scholar]
- M. Farajzadeh & M. Darand Analyzing the influence of air temperature on the cardiovascular, respiratory and stroke mortality in Tehran. Iranian Journal of Environmental Health Science and Engineering, 6(4), 261–270 (2009). [Google Scholar]
- A. Khajavi, D. Khalili, F. Azizi & F. Hadaegh Impact of temperature and air pollution on cardiovascular disease and death in Iran: A 15-year follow-up of Tehran Lipid and Glucose Study. Science of the Total Environment, 661, 243–250 (2019). [CrossRef] [Google Scholar]
- D. Arsenović, S. Savić, Z. Lužanin, I. Radić, D. Milošević & M. Arsić Heat-related mortality as an indicator of population vulnerability in a mid-sized Central European city (Novi Sad, Serbia, Summer 2015). Geographica Pannonica, 23(4), 204–215 (2019).. [Google Scholar]
- N. Scovronick, F. Sera, F. Acquaotta, D. Garzena, S. Fratianni, C. Y. Wright & A. Gasparrini The association between ambient temperature and mortality in South Africa: A time-series analysis. Environmental Research, 161, 229–235 (2018). [CrossRef] [Google Scholar]
- J. Y. Son, N. Gouveia, M. A. Bravo, C. U. de Freitas & M. L. Bell The impact of temperature on mortality in a subtropical city: Effects of cold, heat, and heat waves in São Paulo, Brazil. International Journal of Biometeorology, 60(1), 113–121 (2016). [CrossRef] [PubMed] [Google Scholar]
- V. Huber, L. Krummenauer, C. Peña-Ortiz, S. Lange, A. Gasparrini, A. M. Vicedo-Cabrera, R. Garcia-Herrera & K. Frieler Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming. Environmental Research, 186: 109447 (2020). [CrossRef] [Google Scholar]
- P. G. Goodman, D. W. Dockery & L. Clancy Cause- specific mortality and the extended effects of particulate pollution and temperature exposure. Environmental Health Perspectives, 112(2), 179–185 (2004). [CrossRef] [PubMed] [Google Scholar]
- P. Nafstad, A. Skrondal & E. Bjertness Mortality and temperature in Oslo, Norway, 1990-1995. European Journal of Epidemiology, 17(7), 621–627 (2001). [Google Scholar]
- G. C. Donaldson, S. P. Ermakov, Y. M. Komarov, C. P. McDonald & W. R. Keatinge Cold related mortalities and protection against cold in Yakutsk, eastern Siberia: Observation and interview study. British Medical Journal, 317(7164), 978–982 (1998). [CrossRef] [PubMed] [Google Scholar]
- H. Liu, M. Tong, F. Guo, Q. Nie, J. Li, P. Li, T. Zhu & T. Xue Deaths attributable to anomalous temperature: A generalizable metric for the health impact of global warming. Environment International, 169: 107520 (2022). [CrossRef] [Google Scholar]
- D. Parliari, S. Cheristanidis, C. Giannaros, S. Ch. Keppas, S. Papadogiannaki, F. De’donato, C. Sarras & D. Melas Short-term effects of apparent temperature on cause-specific mortality in the urban area of Thessaloniki, Greece. Atmosphere, 13(6): 852 (2022). [CrossRef] [Google Scholar]
- T. Denpetkul & A. Phosri Daily ambient temperature and mortality in Thailand: Estimated effects, attributable risks, and effect modifications by greenness. Science of the Total Environment, 791:148373 (2021). [CrossRef] [Google Scholar]
- W. Ma, R. Chen & H. Kan Temperature-related mortality in 17 large Chinese cities: How heat and cold affect mortality in China. Environmental Research, 134, 127–133 (2014). [CrossRef] [Google Scholar]
- Q. Zeng, G. Li, Y. Cui, G. Jiang & X. Pan Estimating temperature-mortality exposure-response relationships and optimum ambient temperature at the multi-city level of China. International Journal of Environmental Research and Public Health, 13(3) (2016). [Google Scholar]
- C. Linares, J. Diaz, A. Tobías, R. Carmona & I. J. Mirón Impact of heat and cold waves on circulatory- cause and respiratory-cause mortality in Spain: 1975–2008. Stochastic Environmental Research and Risk Assessment, 29(8), 2037–2046 (2015). [CrossRef] [Google Scholar]
- M. S. Goldberg, A. Gasparrini, B. Armstrong & M. F. Valois The short-term influence of temperature on daily mortality in the temperate climate of Montreal, Canada. Environmental Research, 111(6), 853–860 (2011). [CrossRef] [Google Scholar]
- S. Hajat, Z. Chalabi, P. Wilkinson, B. Erens, L. Jones & N. Mays Public health vulnerability to wintertime weather: Time-series regression and episode analyses of national mortality and morbidity databases to inform the Cold Weather Plan for England. Public Health, 137, 26–34 (2016). [CrossRef] [Google Scholar]
- M. M. Alam, A. S. M. Mahtab, M. R. Ahmed & Q. K. Hassan Developing a cold-related mortality database in Bangladesh. International Journal of Environmental Research and Public Health, 19(19) (2022). [Google Scholar]
- L. G. Chestnut, W. S. Breffle, J. B. Smith & L. S. Kalkstein Analysis of differences in hot-weather- related mortality across 44 U.S. metropolitan areas. Environmental Science and Policy, 1(1), 59–70 (1998). [CrossRef] [Google Scholar]
- J. Yang, C. Q. Ou, Y. Guo, L. Li, C. Guo, P. Y. Chen, H. L. Lin & Q. Y. Liu The burden of ambient temperature on years of life lost in Guangzhou, China. Scientific Reports, 5: 12250 (2015). [CrossRef] [Google Scholar]
- S. Chen, Y. Xiao, M. Zhou, C. Zhou, M. Yu, B. Huang, Y. Xu, T. Liu, J. Hu, X. Xu, L. Lin, R. Hu, Z. Hou, J. Li, D. Jin et al. Comparison of life loss per death attributable to ambient temperature among various development regions: A nationwide study in 364 locations in China. Environmental Health: A Global Access Science Source, 19(1) (2020). [Google Scholar]
- L. S. Lv, D. H. Jin, W. J. Ma, T. Liu, Y. Q. Xu, X. E. Zhang & C. L. Zhou The impact of non-optimum ambient temperature on years of life lost: A multi- county observational study in Hunan, China. International Journal of Environmental Research and Public Health, 17(8): 2699 (2020). [CrossRef] [Google Scholar]
- T. Liu, C. Zhou, H. Zhang, B. Huang, Y. Xu, L. Lin, L. Wang, R. Hu, Z. Hou, J. Li, X. Xu, D. Jin, M. Qin, Q. Zhao, W. Gong, P. Yin, Y. Xu, J. Hu et al. Ambient temperature and years of life lost: A national study in China. Innovation (China), 2(1) (2021). [Google Scholar]
- W. Zeng, M. Yu, M. Zhou, C. Zhou, Y. Xiao, Z. Hou, Y. Xu et al. Age-specific disparity in life loss per death attributable to ambient temperature: A nationwide time-series study in China. Environmental Research, 203: 111834 (2022). [CrossRef] [Google Scholar]
- S. Hajat, B. G. Armstrong, N. Gouveia & P. Wilkinson Mortality displacement of heat-related deaths: A comparison of Delhi, São Paulo, and London. Epidemiology, 16(5), 613–620 (2005). [Google Scholar]
- M. V. Saha, R. E. Davis & D. M. Hondula Mortality displacement as a function of heat event strength in 7 US cities. American Journal of Epidemiology, 179(4), 467–474 (2014). [CrossRef] [PubMed] [Google Scholar]
- Goggins WB, Yang C, Hokama T, Law LSK, & Chan EYY. Using Annual Data to Estimate the Public Health Impact of Extreme Temperatures. American Journal of Epidemiology, 182(1), 80–87 (2015). [CrossRef] [PubMed] [Google Scholar]
- Qiao Z, Guo Y, Yu W & Tong S. Assessment of short- and long-term mortality displacement in heat related deaths in Brisbane, Australia, 1996–2004. Environmental Health Perspectives, 123(8), 766–772 (2015). [CrossRef] [PubMed] [Google Scholar]
- Kan H, London SJ, Chen H, Song G, Chen G, Jiang L, Zhao N, Zhang Y & Chen B. Diurnal temperature range and daily mortality in Shanghai, China. Environmental Research, 103(3), 424–431 (2007). [CrossRef] [Google Scholar]
- Tang J, Xiao CC, Li YR, Zhang JQ, Zhai HY, Geng XY, Ding R & Zhai JX. Effects of diurnal temperature range on mortality in Hefei city, China. International Journal of Biometeorology, 62(5), 851–860 (2018). [CrossRef] [PubMed] [Google Scholar]
- Sharafkhani R, Khanjani N, Bakhtiari B, Jahani Y, Tabrizi JS & Tabrizi FM. Diurnal temperature range and mortality in Tabriz (the northwest of Iran). Urban Climate, 27, 204–211 (2019). [CrossRef] [Google Scholar]
- Xiao Y, Meng C, Huang S, Duan Y, Liu G, Yu S, Peng J, Cheng J & Yin P. Short-term effect of temperature change on non-accidental mortality in Shenzhen, China. International Journal of Environmental Research and Public Health, 18(16) (2021). [Google Scholar]
- Luo Y, Zhang Y, Liu T, Rutherford S, Xu Y, Xu X, Wu W, Xiao J, Zeng W, Chu C & Ma W. Lagged Effect of Diurnal Temperature Range on Mortality in a Subtropical Megacity of China. PLoS ONE, 8(2) (2013). [Google Scholar]
- Sharafkhani R, Khanjani N, Bakhtiari B, Jahani Y & Entezar Mahdi R. Diurnal temperature range and mortality in Urmia, the Northwest of Iran. Journal of Thermal Biology, 69, 281–287 (2017). [CrossRef] [Google Scholar]
- Singh N, Mhawish A, Ghosh S, Banerjee T & Mall RK. Attributing mortality from temperature extremes: A time series analysis in Varanasi, India. Science of the Total Environment, 665, 453–464 (2019). [CrossRef] [Google Scholar]
- Hovdahl J. The Deadly Effect of Day-to-Day Temperature Variation in the United States. Environmental Research Letters, 17(10) (2022). [Google Scholar]
- Paschalidou AK, Kassomenos PA & McGregor GR. Analysis of the synoptic winter mortality climatology in five regions of England: Searching for evidence of weather signals. Science of the Total Environment, 598, 432–444 (2017). [CrossRef] [Google Scholar]
- Plavcová E & Kyselý J. Relationships between sudden weather changes in summer and mortality in the Czech Republic, 1986-2005. International Journal of Biometeorology, 54(5), 539–551 (2010). [CrossRef] [PubMed] [Google Scholar]
- Carder M, McNamee R, Beverland I, Elton R, Cohen GR, Boyd J, & Agius RM. The lagged effect of cold temperature and wind chill on cardiorespiratory mortality in Scotland. Occupational and Environmental Medicine, 62(10), 702–710 (2005). [CrossRef] [PubMed] [Google Scholar]
- Anderson BG & Bell ML. Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology, 20(2), 205–213 (2009). [CrossRef] [PubMed] [Google Scholar]
- Yu W, Mengersen K, Hu W, Guo Y, Pan X & Tong S. Assessing the relationship between global warming and mortality: Lag effects of temperature fluctuations by age and mortality categories. Environmental Pollution, 159(7), 1789–1793 (2011b). [CrossRef] [Google Scholar]
- Morabito M, Crisci A, Moriondo M, Profili F, Francesconi P, Trombi G, Bindi M, Gensini GF & Orlandini S. Air temperature-related human health outcomes: Current impact and estimations of future risks in Central Italy. Science of the Total Environment, 441, 28–40 (2012). [CrossRef] [Google Scholar]
- Xu W, Thach TQ, Chau YK, Lai HK, Lam TH, Chan WM, Lee RSY, Hedley AJ & Wong CM. Thermal stress associated mortality risk and effect modification by sex and obesity in an elderly cohort of Chinese in Hong Kong. Environmental Pollution, 178, 288–293 (2013). [CrossRef] [Google Scholar]
- Bai L, Cirendunzhu, Woodward A, Dawa, Xiraoruodeng, Liu Q. Temperature and mortality on the roof of the world: A time-series analysis in three Tibetan counties, China. Science of the Total Environment, 485, 41–48 (2014). [CrossRef] [Google Scholar]
- Zhang Y, Yu C, Peng M & Zhang L. The burden of ambient temperature on years of life lost: A multi- community analysis in Hubei, China. Science of the Total Environment, 621, 1491–1498 (2018). [CrossRef] [Google Scholar]
- Alahmad B, Shakarchi A, Alseaidan M, & Fox M. The effects of temperature on short-term mortality risk in Kuwait: A time-series analysis. Environmental Research, 171, 278–284 (2019). [CrossRef] [Google Scholar]
- Rathi SK & Sodani PR. Summer temperature and all-cause mortality from 2006 to 2015 for Hyderabad, India. African Health Sciences, 21(3), 1474–1481 (2021a). [CrossRef] [PubMed] [Google Scholar]
- Rathi SK, Sodani PR & Joshi S. Summer Temperature and All-cause Mortality from 2006 to 2015 for Smart City Jaipur, India. Journal of Health Management, 23(2), 294–301 (2021b). [CrossRef] [Google Scholar]
- Yatim ANM, Latif MT, Sofwan NM, Ahamad F, Khan MF, Mahiyuddin WRW & Sahani M. The association between temperature and cause-specific mortality in the Klang Valley, Malaysia. Environmental Science and Pollution Research, 28(42), 60209–60220 (2021). [CrossRef] [PubMed] [Google Scholar]
- Muggeo VM & Hajat S. Modelling the non-linear multiple-lag effects of ambient temperature on mortality in Santiago and Palermo: A constrained segmented distributed lag approach. Occupational and Environmental Medicine, 66(9), 584–591 (2009). [CrossRef] [PubMed] [Google Scholar]
- Baccini M, Kosatsky T, & Biggeri A. Impact of Summer Heat on Urban Population Mortality in Europe during the 1990s: An Evaluation of Years of Life Lost Adjusted for Harvesting. PLoS ONE, 8(7) (2013). [Google Scholar]
- Miron IJ, Criado-Alvarez JJ, Diaz J, Linares C, Mayoral S & Montero JC. Time trends in minimum mortality temperatures in Castile-La Mancha (Central Spain): 1975-2003. International Journal of Biometeorology, 52(4), 291–299 (2008). [CrossRef] [PubMed] [Google Scholar]
- Huynen MMTE, Martens P, Schram D, Weijenberg MP & Kunst AE. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environmental Health Perspectives, 109(5), 463–470 (2001). [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Fan X, Zhang X, Ma P, Wang S & Zheng CJ. Moderately cold temperature associates with high cardiovascular disease mortality in China. Air Quality, Atmosphere and Health, 12(10), 1225–1235 (2019). [CrossRef] [Google Scholar]
- Liu J, Hansen A, Varghese B, Liu Z, Tong M, Qiu H, ... & Bi, P. Cause-specific mortality attributable to cold and hot ambient temperatures in Hong Kong: a time-series study, 2006–2016. Sustainable Cities and Society, 57, 102131 (2020). [CrossRef] [Google Scholar]
- Schwartz BG, Qualls C, Kloner RA & Laskey WK. Relation of total and cardiovascular death rates to climate system, temperature, barometric pressure, and respiratory infection. American Journal of Cardiology, 116(8), 1290–1297 (2015). [CrossRef] [Google Scholar]
- Ballester F, Corella D, Pérez-Hoyos S, Sáez M, & Hervás A. Mortality as a function of temperature. A study in Valencia, Spain, 1991-1993. International Journal of Epidemiology, 26(3), 551–561 (1997). [Google Scholar]
- Hajat S, Kovats RS, Atkinson RW, & Haines A. Impact of hot temperatures on death in London: A time series approach. Journal of Epidemiology and Community Health, 56(5), 367–372 (2002). [CrossRef] [Google Scholar]
- Díaz J, Linares C & Tobías A. Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45-64 age-group. International Journal of Biometeorology, 50(6), 342–348 (2006). [CrossRef] [PubMed] [Google Scholar]
- Linares C, Díaz J. Impact of High Temperatures on Hospital Admissions: Comparative Analysis with Previous Studies about Mortality (Madrid). European Journal of Public Health, 18(3), 317–322 (2008). [CrossRef] [PubMed] [Google Scholar]
- Ishigami A, Hajat S, Kovats RS, Bisanti L, Rognoni M, Russo A & Paldy A. An ecological time-series study of heat-related mortality in three European cities. Environmental Health: A Global Access Science Source, 7 (1-7) (2008). [Google Scholar]
- Revich BA. Climate change alters human health in Russia. Studies on Russian Economic Development, 19(3), 311–317 (2008). [CrossRef] [Google Scholar]
- Armstrong BG, Chalabi Z, Fenn B, Hajat S, Kovats S, Milojevic A, & Wilkinson P. Association of mortality with high temperatures in a temperate climate: England and Wales. Journal of Epidemiology and Community Health, 65(4), 340–345 (2011). [CrossRef] [PubMed] [Google Scholar]
- Lin YK, Ho TJ & Wang YC. Mortality risk associated with temperature and prolonged temperature extremes in elderly populations in Taiwan. Environmental Research, 111(8), 1156–1163 (2011). [CrossRef] [Google Scholar]
- Williams S, Nitschke M, Sullivan T, Tucker GR, Weinstein P, Pisaniello DL, Parton KA & Bi P. Heat and health in Adelaide, South Australia: Assessment of heat thresholds and temperature relationships. Science of the Total Environment, 414, 126–133 (2012a). [CrossRef] [Google Scholar]
- Almeida S, Casimiro E, & Analitis A. Short-term effects of summer temperatures on mortality in Portugal: A time-series analysis. Journal of Toxicology and Environmental Health - Part A: Current Issues, 76(7), 422–428 (2013). [CrossRef] [PubMed] [Google Scholar]
- Tawatsupa B, Dear K, Kjellstrom T & Sleigh A. The association between temperature and mortality in tropical middle income Thailand from 1999 to 2008. International Journal of Biometeorology, 58(2), 203–215 (2014). [CrossRef] [PubMed] [Google Scholar]
- Li J, Xu X, Yang J, Liu Z, Xu L, Gao J, Liu X, Wu H, Wang J, Yu J, Jiang B & Liu Q. Ambient high temperature and mortality in Jinan, China: A study of heat thresholds and vulnerable populations. Environmental Research, 156, 657–664 (2017). [CrossRef] [Google Scholar]
- Wichmann J. Heat effects of ambient apparent temperature on all-cause mortality in Cape Town, Durban and Johannesburg, South Africa: 2006– 2010. Science of the Total Environment, 587, 266–272 (2017). [Google Scholar]
- Wang Y, Wang A, Zhai J, Tao H, Jiang T, Su B, Yang J, Wang G, Liu Q, Gao C, Kundzewicz ZW, Zhan M, Feng Z & Fischer T. Tens of thousands additional deaths annually in cities of China between 1.5 °C and 2.0 °C warming. Nature Communications, 10(1): 380 (2019). [CrossRef] [Google Scholar]
- Dutta A, Bhattacharya S, AK K, Pati S, Swain S & Nanda L. At which temperature do the deleterious effects of ambient heat ―kick-in‖ to affect all-cause mortality? An exploration of this threshold from an eastern Indian city. International Journal of Environmental Health Research, 30(2), 187–197 (2020). [CrossRef] [PubMed] [Google Scholar]
- Saucy A, Ragettli MS, Vienneau D, de Hoogh K, Tangermann L, Schäffer B, Wunderli JM, Probst-Hensch N & Röösli M. The role of extreme temperature in cause-specific acute cardiovascular mortality in Switzerland: A case-crossover study. Science of the Total Environment, 790: 147958 (2021). [CrossRef] [Google Scholar]
- Alahmad B, Shakarchi AF, Khraishah H, Alseaidan M, Gasana J, Al-Hemoud A, Koutrakis P, & Fox MA. Extreme temperatures and mortality in Kuwait: Who is vulnerable? Science of the Total Environment, 732: 139289 (2020). [CrossRef] [Google Scholar]
- Royé D. The effects of hot nights on mortality in Barcelona, Spain. International Journal of Biometeorology, 61(12), 2127–2140 (2017). [CrossRef] [PubMed] [Google Scholar]
- Seposo XT, Dang TN & Honda Y. Evaluating the effects of temperature on mortality in Manila city (Philippines) from 2006–2010 using a distributed lag nonlinear model. International Journal of Environmental Research and Public Health, 12(6), 6842–6857 (2015). [CrossRef] [Google Scholar]
- J.C. Alberdi, J. Díaz, J.C. Montero, & I. Mirón Daily mortality in Madrid community 1986-1992: Relationship with meteorological variables. European Journal of Epidemiology, 14(6), 571–578. (1998). [CrossRef] [Google Scholar]
- F.C. Curriero, K.S. Heiner, J.M. Samet, S.L. Zeger, L. Strug, & J.A. Patz Temperature and mortality in 11 cities of the eastern United States. American Journal of Epidemiology, 155(1), 80–87. (2002). [CrossRef] [Google Scholar]
- M.A. Folkerts, P. Bröde, W.J.W. Botzen, M.L. Martinius, N. Gerrett, C.N. Harmsen, & H.A.M. Daanen Sex Differences in Temperature-Related All-Cause Mortality in the Netherlands. International Archives of Occupational and Environmental Health, 95(1), 249–258. (2022). [CrossRef] [PubMed] [Google Scholar]
- G. Krstić Apparent temperature and air pollution vs. elderly population mortality in metro Vancouver. PLoS ONE, 6(9). (2011). [Google Scholar]
- V. Ingole, S. Juvekar, V. Muralidharan, S. Sambhudas, & J. Rocklöv The short-term association of temperature and rainfall with mortality in Vadu Health and Demographic Surveillance System: A population level time series analysis. Global Health Action, 5(SUPPL.), 44–52. (2012). [Google Scholar]
- S. Sivic Mortality associated with seasonal changes in ambient temperature and humidity in Zenica- Doboj Canton. Medicinski Glasnik, 18(2). (2021). [Google Scholar]
- J. Rocklöv & B. Forsberg The effect of high ambient temperature on the elderly population in three regions of Sweden. International Journal of Environmental Research and Public Health, 7(6), 2607–2619. (2010). [CrossRef] [Google Scholar]
- I. Hůnová, M. Brabec, M. Malý, V. Knobová, & M. Braniš Major heat waves of 2003 and 2006 and health outcomes in Prague. Air Quality, Atmosphere and Health, 10(2), 183–194. (2017). [CrossRef] [Google Scholar]
- E. Tsekeri, D. Kolokotsa, & M. Santamouris On the association of ambient temperature and elderly mortality in a Mediterranean island—Crete. Science of the Total Environment, 738: 139843. (2020). [CrossRef] [Google Scholar]
- P. Vaneckova, M.A. Hart, P.J. Beggs, & R.J. De Dear Synoptic analysis of heat-related mortality in Sydney, Australia, 1993-2001. International Journal of Biometeorology, 52(6), 439–451. (2008). [CrossRef] [PubMed] [Google Scholar]
- E. Plavcová & J. Kyselý Effects of sudden air temperature and pressure changes on mortality in the Czech Republic. Epidemiologie, Mikrobiologie, Imunologie, 58(2), 73–83. (2009). [Google Scholar]
- P. Scarborough, S. Allender, M. Rayner, & M. Goldacre Contribution of climate and air pollution to variation in coronary heart disease mortality rates in England. PLoS ONE, 7(3) (2012). [Google Scholar]
- R.E. Davis, P.C. Knappenberger, P.J. Michaels, & W.M. Novicoff Seasonality of climate-human mortality relationships in US cities and impacts of climate change. Climate Research, 26(1), 61–76. (2004). [CrossRef] [Google Scholar]
- D.G.C. Rainham, K.E. Tomic, S.C. Sheridan, & R.T. Burnett Synoptic weather patterns and modification of the association between air pollution and human mortality. International Journal of Environmental Health Research, 15(5), 347-360 (2005) [CrossRef] [PubMed] [Google Scholar]
- V.T. Kendrovski The impact of ambient temperature on mortality among the urban population in Skopje, Macedonia during the period 1996-2000. BMC Public Health, 6 (1-6). (2006). [CrossRef] [Google Scholar]
- K. Błazejczyk & G. McGregor Bio-thermal conditions and mortality in selected European agglomerations. Przeglad Geograficzny, 79(3–4), 627–649. (2007). [Google Scholar]
- E. Callaly, O. Mikulich, & B. Silke Increased winter mortality: The effect of season, temperature and deprivation in the acutely ill medical patient. European Journal of Internal Medicine, 24(6), 546–551. (2013). [CrossRef] [Google Scholar]
- D. Arsenović Seasonality in Human Mortality: Results for the City of Novi Sad (Serbia). Stanovništvo, 56(1), 27–42. (2018). [CrossRef] [Google Scholar]
- M. Li, M. Zhou, J. Yang, P. Yin, B. Wang, & Q. Liu Temperature, temperature extremes, and cause- specific respiratory mortality in China: A multi-city time series analysis. Air Quality, Atmosphere and Health, 12(5), 539–548. (2019). [CrossRef] [Google Scholar]
- J. Hu, M. Zhou, M. Qin, S. Tong, Z. Hou, Y. Xu, C. Zhou, et al. Long-Term Exposure to Ambient Temperature and Mortality Risk in China: A Nationwide Study Using the Difference-in- Differences Design. Environmental Pollution, 292, 118392 (2022). [CrossRef] [Google Scholar]
- M. Falarz The influence of air temperature conditions and their changes on the mortality in Poland. SGEM, 18(4.3), 415–424. (2018). [Google Scholar]
- C.R. de Freitas & E.A. Grigorieva Role of Acclimatization in Weather-Related Human Mortality during the Transition Seasons of Autumn and Spring in a Thermally Extreme Mid-Latitude Continental Climate. International Journal of Environmental Research and Public Health, 12(12), 14974–14987 (2015). [CrossRef] [PubMed] [Google Scholar]
- G. Brown, V. Fearn, & C. Wells Exploratory analysis of seasonal mortality in England and Wales, 1998 to 2007. Health Statistics Quarterly / Office for National Statistics, 48, 58–80. (2010). [CrossRef] [Google Scholar]
- E.R. Hajek, J.R. Gutiérrez, & G.A. Espinosa Seasonality of mortality in human populations of Chile as related to a climatic gradient. International Journal of Biometeorology, 28(1), 29–38 (1984). [CrossRef] [PubMed] [Google Scholar]
- B. Ojha, R. Khanal, T. Kalyvas, N. Gizani, & E. Zervas Use of TEVY index to measure the temperature variability within a year in different climatic zones of Nepal. E3S Web of Conferences, 436, 02011. (2023). [CrossRef] [EDP Sciences] [Google Scholar]
- Y. Li & H.D. Roth Daily mortality analysis by using different regression models in Philadelphia County, 1973-1990. Inhalation Toxicology, 7(1), 45–58. (1995). [CrossRef] [Google Scholar]
- S. Hales, C. Salmond, G.I. Town, T. Kjellstrom, & A. Woodward Daily mortality in relation to weather and air pollution in Christchurch, New Zealand. Australian and New Zealand Journal of Public Health, 24(1), 89–91. (2000). [CrossRef] [Google Scholar]
- S. Vandentorren & P. Empereur-Bissonnet Health impact of the 2003 Heat-Wave in France. In Extreme Weather Events and Public Health Responses (pp. 81–87). (2005). [Google Scholar]
- W.R. Keatinge & G.C. Donaldson Heat acclimatization and sunshine cause false indications of mortality due to ozone. Environmental Research, 100(3), 387–393. (2006). [CrossRef] [PubMed] [Google Scholar]
- A. Le Tertre, A. Lefranc, D. Eilstein, C. Declercq, S. Medina, M. Blanchard, B. Chardon, P. Fabre, L. Filleul, J.F. Jusot, L. Pascal, H. Prouvost, S. Cassadou, & M. Ledrans Impact of the 2003 heatwave on all-cause mortality in 9 French cities. Epidemiology, 17(1), 75–79. (2006). [CrossRef] [PubMed] [Google Scholar]
- Tan J, Zheng Y, Song G, Kalkstein LS, Kalkstein AJ & Tang X (2007) Heat wave impacts on mortality in Shanghai, 1998 and 2003. International Journal of Biometeorology, 51(3), 193–200. https://doi.org/10.1007/s00484-006-0058-3 [Google Scholar]
- J. Tan, L.S. Kalkstein, J. Huang, S. Lin, H. Yin, & D. Shao An operational heat/health warning system in Shanghai. International Journal of Biometeorology, 48(3), 157–162. (2004). [CrossRef] [PubMed] [Google Scholar]
- F.Y. Yip, W.D. Flanders, A. Wolkin, D. Engelthaler, W. Humble, A. Neri, L. Lewis, L. Backer, & C. Rubin The impact of excess heat events in Maricopa County, Arizona: 2000-2005. International Journal of Biometeorology, 52(8), 765–772. (2008). [Google Scholar]
- S. Tong, C. Ren, & N. Becker Excess deaths during the 2004 heatwave in Brisbane, Australia. International Journal of Biometeorology, 54(4), 393–400. (2010). [CrossRef] [PubMed] [Google Scholar]
- R. Chen, C. Wang, X. Meng, H. Chen, T.Q. Thach, C.M. Wong, & H. Kan Both low and high temperature may increase the risk of stroke mortality. Neurology, 81(12), 1064–1070. (2013). [CrossRef] [PubMed] [Google Scholar]
- A.M. Grjibovski, N. Nurgaliyeva, A. Kosbayeva, A. Sharbakov, T. Seysembekov, & B. Menne Effect of high temperatures on daily counts of mortality from diseases of circulatory system in Astana, Kazakhstan. Medicina (Lithuania), 48(12):94, 640–646. (2013). [Google Scholar]
- Y. Li, C. Akkus, X. Yu, A. Joyner, J. Kmet, D. Sweat, & C. Jia Heatwave events and mortality outcomes in Memphis, Tennessee: Testing effect modification by socioeconomic status and urbanicity. International Journal of Environmental Research and Public Health, 16(22: 4568. (2019). [CrossRef] [Google Scholar]
- X. Hu, W. Han, Y. Wang, K. Aunan, X. Pan, J. Huang, & G. Li Does air pollution modify temperature-related mortality? A systematic review and meta-analysis. Environmental Research, 210: 112898 (2022). [CrossRef] [Google Scholar]
- K. Katsouyanni, A. Pantazopoulou, G. Touloumi, L. Tselepidaki, K. Moustris, D. Asimakopoulos, G. Poulopoulou, & D. Trichopoulos Evidence for interaction between air pollution and high temperature in the causation of excess mortality. Archives of Environmental Health, 48(4), 235–242. (1993). [CrossRef] [PubMed] [Google Scholar]
- F. Sartor, R. Snacken, C. Demuth, & D. Walckiers Temperature, ambient ozone levels, and mortality during summer, 1994, in Belgium. Environmental Research, 70(2), 105–113. (1995). [CrossRef] [Google Scholar]
- C. Rooney, A.J. McMichael, R.S. Kovats, & M.P. Coleman Excess mortality in England and Wales, and in Greater London, during the 1995 heatwave. Journal of Epidemiology and Community Health, 52(8), 482–486. (1998). [CrossRef] [PubMed] [Google Scholar]
- J. Díaz, R. García, F. Velázquez De Castro, E. Hernández, C. López, & A. Otero Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997. International Journal of Biometeorology, 46(3), 145–149. (2002). [CrossRef] [PubMed] [Google Scholar]
- E. Ahmadnezhad, K.H. Naieni, A. Ardalan, M. Mahmoudi, M. Yunesian, K. Naddafi, & A.R. Mesdaghinia Excess mortality during heat waves, Tehran Iran: An ecological time-series study. Journal of Research in Health Sciences, 13(1), 24–31. (2013). [PubMed] [Google Scholar]
- A. Analitis, P. Michelozzi, D. D’Ippoliti, F. De’Donato, B. Menne, F. Matthies, R.W. Atkinson, C. Iñiguez, X. Basagaña, A. Schneider, A. Lefranc, A. Paldy, L. Bisanti, & K. Katsouyanni Effects of heat waves on mortality: Effect modification and confounding by air pollutants. Epidemiology, 25(1), 15–22. (2014). [CrossRef] [PubMed] [Google Scholar]
- A. Krug, D. Fenner, H.G. Mücke, & D. Scherer The contribution of air temperature and ozone to mortality rates during hot weather episodes in eight German cities during the years 2000 and 2017. Natural Hazards and Earth System Sciences, 20(11), 3083–3097. (2020). [CrossRef] [Google Scholar]
- A. Analitis, F. De’ Donato, M. Scortichini, T. Lanki, X. Basagana, F. Ballester, C. Astrom, A. Paldy, M. Pascal, A. Gasparrini, P. Michelozzi, & K. Katsouyanni Synergistic effects of ambient temperature and air pollution on health in Europe: Results from the PHASE project. International Journal of Environmental Research and Public Health, 15(9): 1856. (2018). [CrossRef] [Google Scholar]
- W.B. Goggins, E.Y. Chan, C. Yang, & M. Chong Associations between mortality and meteorological and pollutant variables during the cool season in two Asian cities with sub-tropical climates: Hong Kong and Taipei. Environmental Health: A Global Access Science Source, 12(1). (2013). [Google Scholar]
- Y. Cheng & H. Kan Effect of the interaction between outdoor air pollution and extreme temperature on daily mortality in Shanghai, China. Journal of Epidemiology, 22(1), 28–36. (2012). [CrossRef] [PubMed] [Google Scholar]
- Z. Qian, Q. He, H.M. Lin, L. Kong, C.M. Bentley, W. Liu, & D. Zhou High temperatures enhanced acute mortality effects of ambient particle pollution in the ‗Oven’ city of Wuhan, China. Environmental Health Perspectives, 116(9), 1172–1178. (2008). [CrossRef] [PubMed] [Google Scholar]
- M. Stafoggia, J. Schwartz, F. Forastiere, & C.A. Perucci Does temperature modify the association between air pollution and mortality? A multicity case-crossover analysis in Italy. American Journal of Epidemiology, 167(12), 1476–1485. (2008). [CrossRef] [PubMed] [Google Scholar]
- M.M. Rahman, R. McConnell, H. Schlaerth, J. Ko, S. Silva, F.W. Lurmann, L. Palinkas, et al. The effects of coexposure to extremes of heat and particulate air pollution on mortality in California: Implications for climate change. American Journal of Respiratory and Critical Care Medicine, 206(9), 1117–1127. (2022). [CrossRef] [PubMed] [Google Scholar]
- S. Sun, P. Cao, K.P. Chan, H. Tsang, C.M. Wong, & T.Q. Thach Temperature as a modifier of the effects of fine particulate matter on acute mortality in Hong Kong. Environmental Pollution, 205, 357–364. (2015). [CrossRef] [Google Scholar]
- A.K. Park, Y.C. Hong, & H. Kim Effect of changes in season and temperature on mortality associated with air pollution in Seoul, Korea. Journal of Epidemiology and Community Health, 65(4), 368–375. (2011). [CrossRef] [PubMed] [Google Scholar]
- C.M. Lin & C.M. Liao Temperature-dependent association between mortality rate and carbon monoxide level in a subtropical city: Kaohsiung, Taiwan. International Journal of Environmental Health Research, 19(3), 163–174. (2009). [CrossRef] [PubMed] [Google Scholar]
- J. Díaz, C. Linares, R. García-Herrera, C. López, & R. Trigo Impact of temperature and air pollution on the mortality of children in Madrid. Journal of Occupational and Environmental Medicine, 46(8), 768–774. (2004). [CrossRef] [PubMed] [Google Scholar]
- X. Sun, Q. Sun, X. Zhou, X. Li, M. Yang, A. Yu, & F. Geng Heat wave impact on mortality in Pudong New Area, China in 2013. Science of the Total Environment, 493, 789–794. (2014). [CrossRef] [Google Scholar]
- J. Kyselý Mortality and displaced mortality during heat waves in the Czech Republic. International Journal of Biometeorology, 49(2), 91–97. (2004). [CrossRef] [PubMed] [Google Scholar]
- D. Wang, K.K.L. Lau, C. Ren, W.B. Goggins, Y. Shi, H.C. Ho, T.C. Lee, L.S. Lee, J. Woo, & E. Ng The impact of extremely hot weather events on all- cause mortality in a highly urbanized and densely populated subtropical city: A 10-year time-series study (2006–2015). Science of the Total Environment, 690, 923–931. (2019). [CrossRef] [Google Scholar]
- S.A. Changnon, K.E. Kunkel, & B.C. Reinke Impacts and responses to the 1995 heat wave: A call to action. Bulletin of the American Meteorological Society, 77(7), 1497–1506. (1996). [CrossRef] [Google Scholar]
- R. Kaiser, A. Le Tertre, J. Schwartz, C.A. Gotway, W.R. Daley, & C.H. Rubin The effect of the 1995 heat wave in Chicago on all-cause and cause- specific mortality. American Journal of Public Health, 97(Suppl 1), S158–S162. (2007). [CrossRef] [PubMed] [Google Scholar]
- J.L. Geirinhas, R.M. Trigo, R. Libonati, L.C.O. Castro, P.M. Sousa, C.A.S. Coelho, L.F. Peres, & M.D.A.F.M. Magalhães Characterizing the atmospheric conditions during the 2010 heatwave in Rio de Janeiro marked by excessive mortality rates. Science of the Total Environment, 650, 796–808. (2019). [CrossRef] [Google Scholar]
- N.C. Oray, D. Oray, E. Aksay, R. Atilla, & B. Bayram The impact of a heat wave on mortality in the emergency department. Medicine (United States), 97(52). (2018). [Google Scholar]
- L. Grize, A. Huss, O. Thommen, C. Schindler, & C. Braun-Fahrländer Heat wave 2003 and mortality in Switzerland. Swiss Medical Weekly, 135(13–14), 200–205. (2005). [PubMed] [Google Scholar]
- M.S. Ragettli, A.M. Vicedo-Cabrera, C. Schindler, & M. Röösli Exploring the association between heat and mortality in Switzerland between 1995 and 2013. Environmental Research, 158, 703–709. (2017). [CrossRef] [Google Scholar]
- E.J. Kim & H. Kim Effect modification of individual- and regional-scale characteristics on heat wave-related mortality rates between 2009 and 2012 in Seoul, South Korea. Science of the Total Environment, 595, 141–148. (2017). [CrossRef] [Google Scholar]
- B.A. Revich, D.A. Shaposhnikov, M.A. Podol’naya, T.L. Khor’kova, & E.A. Kvasha Heat waves in southern cities of European Russia as a risk factor for premature mortality. Studies on Russian Economic Development, 26(2), 142–150.(2015). [CrossRef] [Google Scholar]
- B. Revich & D. Shaposhnikov The influence of heat and cold waves on mortality in Russian subarctic cities with varying climates. International Journal of Biometeorology, 66(12), 2501–2515. (2022). [CrossRef] [PubMed] [Google Scholar]
- B.A. Revich & D.A. Shaposhnikov Climate change, heat waves, and cold spells as risk factors for increased mortality in some regions of Russia. Studies on Russian Economic Development, 23(2), 195–207. (2012). [CrossRef] [Google Scholar]
- A. Monteiro, V. Carvalho, T. Oliveira, & C. Sousa Excess mortality and morbidity during the July 2006 heat wave in Porto, Portugal. International Journal of Biometeorology, 57(1), 155–167. (2013). [CrossRef] [PubMed] [Google Scholar]
- R. Bustinza, G. Lebel, P. Gosselin, D. Bélanger, & F. Chebana Health impacts of the July 2010 heat wave in Québec, Canada. BMC Public Health, 13(1). (2013). [CrossRef] [Google Scholar]
- S.B. Henderson, K.E. McLean, M.J. Lee, & T. Kosatsky Analysis of community deaths during the catastrophic 2021 heat dome. Environmental Epidemiology, 6(1), E189. (2022). [Google Scholar]
- S. Williams, M. Nitschke, P. Weinstein, D.L. Pisaniello, K.A. Parton, & B. Bi The impact of summer temperatures and heatwaves on mortality and morbidity in Perth, Australia 1994-2008. Environment International, 40(1), 33–38. (2012). [CrossRef] [Google Scholar]
- J. Herbst, K. Mason, R.W. Byard, J.D. Gilbert, C. Charlwood, K.J. Heath, C. Winskog, & N.E.I. Langlois Heat-related deaths in Adelaide, South Australia: Review of the literature and case findings—An Australian perspective. Journal of Forensic and Legal Medicine, 22, 73–78. (2014). [CrossRef] [PubMed] [Google Scholar]
- J. Díaz, A. Jordán, R. García, C. López, J.C. Alberdi, E. Hernández, & A. Otero Heat waves in Madrid 1986-1997: Effects on the health of the elderly. International Archives of Occupational and Environmental Health, 75(3), 163–170. (2002). [CrossRef] [PubMed] [Google Scholar]
- J.C. Montero, I.J. Mirón, J.J. Criado-Álvarez, C. Linares, & J. Díaz Influence of local factors in the relationship between mortality and heat waves: Castile-La Mancha (1975-2003). Science of the Total Environment, 414, 73–80. (2012). [CrossRef] [Google Scholar]
- O. Aboubakri, N. Khanjani, Y. Jahani, & B. Bakhtiari The impact of heat waves on mortality and years of life lost in a dry region of Iran (Kerman) during 2005–2017. International Journal of Biometeorology, 63(9), 1139–1149. (2019). [CrossRef] [PubMed] [Google Scholar]
- S. Hertel, A. Le Tertre, K.H. Jöckel, & B. Hoffmann Quantification of the heat wave effect on cause- specific mortality in Essen, Germany. European Journal of Epidemiology, 24(8), 407–414. (2009). [CrossRef] [PubMed] [Google Scholar]
- M. Poumadère, C. Mays, S. Le Mer, & R. Blong The 2003 heat wave in France: Dangerous climate change here and now. Risk Analysis, 25(6), 1483–1494. (2005). [CrossRef] [PubMed] [Google Scholar]
- J. Paravantis, M. Santamouris, C. Cartalis, C. Efthymiou, & N. Kontoulis Mortality associated with high ambient temperatures, heatwaves, and the urban heat island in Athens, Greece. Sustainability (Switzerland), 9(4), 606. (2017). [CrossRef] [Google Scholar]
- J.H. Greenberg, J. Bromberg, C.M. Reed, T.L. Gustafson, & R.A. Beauchamp The epidemiology of heat-related deaths, Texas-1950, 1970-79, and 1980. American Journal of Public Health, 73(7), 805–807. (1983). [CrossRef] [PubMed] [Google Scholar]
- J. Rocklöv, K. Ebi, & B. Forsberg Mortality related to temperature and persistent extreme temperatures: A study of cause-specific and age-stratified mortality. Occupational and Environmental Medicine, 68(7), 531–536. (2011). [CrossRef] [PubMed] [Google Scholar]
- K. Zhang, T.H. Chen, & C.E. Begley Impact of the 2011 heat wave on mortality and emergency department visits in Houston, Texas. Environmental Health: A Global Access Science Source, 14, 1-7. (2015). [Google Scholar]
- K. Chen, J. Bi, J. Chen, X. Chen, L. Huang, & L. Zhou Influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China. Science of the Total Environment, 506, 18–25. (2015). [CrossRef] [Google Scholar]
- Y.Q. Zhang, P.R. Zhong, R. Wu, B. Ye, X.J. Tian, C.H. Zhu, & L. Ma Acute impact of cold spells on mortality during 2001-2011 in Jiang’an district of Wuhan, China. Zhonghua Yu Fang Yi Xue Za Zhi Chinese Journal of Preventive Medicine., 50(7), 634–639. (2016). [Google Scholar]
- H. Chak Ho, T.C. Chan, Z. Xu, C. Huang, & C. Li Individual- and community-level shifts in mortality patterns during the January 2016 East Asia cold wave associated with a super El Niño event: Empirical evidence in Hong Kong. Science of the Total Environment, 7:135050. (2020). [CrossRef] [Google Scholar]
- B.A. Revich & D.A. Shaposhnikov Cold waves in southern cities of European Russia and premature mortality. Studies on Russian Economic Development, 27(2), 210–215. (2016). [CrossRef] [Google Scholar]
- J.C. Montero, I.J. Mirón, J.J. Criado-Álvarez, C. Linares, & J. Díaz Mortality from cold waves in Castile—La Mancha, Spain. Science of the Total Environment, 408(23), 5768–5774. (2010). [CrossRef] [Google Scholar]
- R. Ruuhela, A. Votsis, J. Kukkonen, K. Jylhä, S. Kankaanpää, & A. Perrels Temperature-related mortality in Helsinki compared to its surrounding region over two decades, with special emphasis on intensive heatwaves. Atmosphere, 12(1). (2021). [Google Scholar]
- H.R. Sobral Heat island in São Paulo, Brazil: Effects on health. Critical Public Health, 15(2), 147–156. (2005). [CrossRef] [Google Scholar]
- A. Milojevic, B.G. Armstrong, A. Gasparrini, S.I. Bohnenstengel, B. Barratt, & P. Wilkinson Methods to estimate acclimatization to urban heat island effects on heat- and cold-related mortality. Environmental Health Perspectives, 124(7), 1016–1022. (2016). [CrossRef] [PubMed] [Google Scholar]
- H. Huang, H. Yang, X. Deng, P. Zeng, Y. Li, L. Zhang & L. Zhu. Influencing mechanisms of urban heat island on respiratory diseases. Iranian Journal of Public Health, 48(9), 1636–1646 (2019). [Google Scholar]
- R. Di Cristo, A. Mazzarella, & R. Viola. An analysis of heat index over Naples (Southern Italy) in the context of European heat wave of 2003. Natural Hazards, 40(2), 373–379 (2007). [CrossRef] [Google Scholar]
- S. Heo, M.L. Bell, & J.T. Lee. Comparison of health risks by heat wave definition: Applicability of wet- bulb globe temperature for heat wave criteria. Environmental Research, 168, 158–170 (2019). [CrossRef] [Google Scholar]
- N. Shartova, D. Shaposhnikov, P. Konstantinov & B. Revich. Cardiovascular mortality during heat waves in temperate climate: An association with bioclimatic indices. International Journal of Environmental Health Research, 28(5), 522–534 (2018). [CrossRef] [PubMed] [Google Scholar]
- N.V. Shartova, D.A. Shaposhnikov, P.I. Konstantinov & B.A. Revich. Universal thermal climate index (UTCI) applied to determine thresholds for temperature-related mortality. Health Risk Analysis, (3), 83–93 (2019). [CrossRef] [Google Scholar]
- M. Kang, K. Rang Kim & J.Y. Shin. Event-based heat-related risk assessment model for South Korea using maximum perceived temperature, wet-bulb globe temperature, and air temperature data. International Journal of Environmental Research and Public Health, 17(8): 2631 (2020). [CrossRef] [Google Scholar]
- K. Błażejczyk, R. Twardosz, P. Wałach, K. Czarnecka, & A. Błażejczyk. Heat strain and mortality effects of prolonged central European heat wave— An example of June 2019 in Poland. International Journal of Biometeorology (2021). [Google Scholar]
- K.C. Conlon, E. Mallen, C.J. Gronlund, V.J. Berrocal, L. Larsen, & M.S. O’neill. Mapping human vulnerability to extreme heat: A critical assessment of heat vulnerability indices created using principal components analysis. Environmental Health Perspectives, 128(9), 1–14 (2020). [CrossRef] [Google Scholar]
- K. Hu, S. Li, J. Zhong, X. Yang, F. Fei, F. Chen, Q. Zhao, Y. Zhang, G. Chen, Q. Chen, T. Ye, Y. Guo & J. Qi. Spatiotemporal or temporal index to assess the association between temperature variability and mortality in China?. Environmental Research, 170, 344–350 (2019b). [CrossRef] [Google Scholar]
- N. Langlois, J. Herbst, K. Mason, J. Nairn & R.W. Byard. Using the Excess Heat Factor (EHF) to predict the risk of heat related deaths. Journal of Forensic and Legal Medicine, 20(5), 408–411 (2013). [CrossRef] [Google Scholar]
- J. Li, S. Luo, X. Ding, J. Yang, X. Liu, J. Gao, L. Xu, W. Tang, & Q. Liu. Influence of daily ambient temperature on mortality and years of life lost in Chongqing. Zhonghua Liu Xing Bing Xue Za Zhi = Zhonghua Liuxingbingxue Zazhi, 37(3), 375–380 (2016). [Google Scholar]
- S.H. Fu, A. Gasparrini, P.S. Rodriguez & P. Jha. Mortality attributable to hot and cold ambient temperatures in India: A nationally representative case-crossover study. PLoS Medicine, 15(7) (2018). [Google Scholar]
- S.L.D. Moraes, R. Almendra, & L.V. Barrozo. Impact of Heat Waves and Cold Spells on Cause- Specific Mortality in the City of São Paulo, Brazil. International Journal of Hygiene and Environmental Health, 239 (2022). [Google Scholar]
- L.C. Chien, Y. Guo & K. Zhang. Spatiotemporal analysis of heat and heat wave effects on elderly mortality in Texas, 2006-2011. Science of the Total Environment, 562, 845–851 (2016). [CrossRef] [Google Scholar]
- H. Qiu, L. Tian, K.F. Ho, I.T.S. Yu, T.Q. Thach & C.M. Wong. Who is more vulnerable to death from extremely cold temperatures? A case-only approach in Hong Kong with a temperate climate. International Journal of Biometeorology, 60(5), 711–717 (2016). [CrossRef] [PubMed] [Google Scholar]
- J. Cheng, H.C. Ho, H. Su, C. Huang, R. Pan, M.Z. Hossain, H. Zheng, & Z. Xu. Low ambient temperature shortened life expectancy in Hong Kong: A time-series analysis of 1.4 million years of life lost from cardiorespiratory diseases. Environmental Research, 201: 111652 (2021). [CrossRef] [Google Scholar]
- Y. Huang, J. Yang, J. Chen, H. Shi, & X. Lu. Association between Ambient Temperature and Age- Specific Mortality from the Elderly: Epidemiological Evidence from the Chinese Prefecture with Most Serious Aging. Environmental Research, 211, 113103 (2022). [CrossRef] [Google Scholar]
- R. Basu & B.D. Ostro. A multicounty analysis identifying the populations vulnerable to mortality associated with high ambient temperature in California. American Journal of Epidemiology, 168(6), 632–637 (2008). [CrossRef] [PubMed] [Google Scholar]
- J. Klenk, C. Becker & K. Rapp. Heat-related mortality in residents of nursing homes. Age and Ageing, 39(2), 245–252 (2010). [CrossRef] [PubMed] [Google Scholar]
- J.L. Pearce, M. Hyer, R.J. Hyndman, M. Loughnan, M. Dennekamp & N. Nicholls. Exploring the influence of short-term temperature patterns on temperature-related mortality: A case-study of Melbourne, Australia. Environmental Health: A Global Access Science Source, 15(1), 1–10 (2016). [Google Scholar]
- J. Ban, D. Xu, M.Z. He, Q. Sun, C. Chen, W. Wang, P. Zhu, & T. Li. The effect of high temperature on cause-specific mortality: A multi- county analysis in China. Environment International, 106, 19–26 (2017). [CrossRef] [Google Scholar]
- W. Yu, P. Vaneckova, K. Mengersen, X. Pan & S. Tong. Is the association between temperature and mortality modified by age, gender and socio- economic status?. Science of the Total Environment, 408(17), 3513–3518 (2010). [CrossRef] [Google Scholar]
- K. Chen, L. Zhou, X. Chen, Z. Ma, Y. Liu, L. Huang, et al. Urbanization level and vulnerability to heat-related mortality in Jiangsu Province, China. Environ Health Perspect, 124(12), 1863–1869 (2016). [CrossRef] [PubMed] [Google Scholar]
- J. Rocklöv, B. Forsberg, K. Ebi & T. Bellander. Susceptibility to mortality related to temperature and heat and cold wave duration in the population of Stockholm County, Sweden. Global Health Action, 7(1): 22737 (2014). [CrossRef] [PubMed] [Google Scholar]
- J. Hu, Z. Hou, Y. Xu, M. Zhou, C. Zhou, Y. Xiao, M. Yu, B. Huang, X. Xu, L. Lin, T. Liu, J. Xiao, W. Gong, R. Hu, J. Li, D. Jin, M. Qin, Q. Zhao, P. Yin et al. Life loss of cardiovascular diseases per death attributable to ambient temperature: A national time series analysis based on 364 locations in China. Science of the Total Environment, 756: 142614 (2021). [CrossRef] [Google Scholar]
- R. Bozick. Ambient Air Temperature, Air Quality and the Timing of Excess Mortality Among Young Men in the United States. Human Ecology, 50(2), 373–383 (2022). [CrossRef] [Google Scholar]
- R. Basu, D. Pearson, L. Sie & R. Broadwin. A Case- Crossover Study of Temperature and Infant Mortality in California. Paediatric and Perinatal Epidemiology, 29(5), 407–415 (2015). [CrossRef] [PubMed] [Google Scholar]
- J.Y. Son, J.T. Lee & M.L. Bell. Is ambient temperature associated with risk of infant mortality? A multi-city study in Korea. Environmental Research, 158, 748–752 (2017). [CrossRef] [Google Scholar]
- L.B. Strand, A.G. Barnett & S. Tong. Maternal exposure to ambient temperature and the risks of preterm birth and stillbirth in Brisbane, Australia. American Journal of Epidemiology, 175(2), 99–107 (2012). [CrossRef] [PubMed] [Google Scholar]
- I. Jhun, D.A. Mata, F. Nordio, M. Lee, J. Schwartz & A. Zanobetti. Ambient Temperature and Sudden Infant Death Syndrome in the United States. Epidemiology, 28(5), 728–734 (2017). [CrossRef] [PubMed] [Google Scholar]
- N. Auger, W.D. Fraser, A. Smargiassi, & T. Kosatsky. Ambient heat and sudden infant death: A case-crossover study spanning 30 years in Montreal, Canada. Environmental Health Perspectives, 123(7), 712–716 (2015). [CrossRef] [PubMed] [Google Scholar]
- M. Carder, R. McNamee, I. Beverland, R. Elton, M. Van Tongeren, G.R. Cohen, J. Boyd, W. MacNee, & R.M. Agius. Interacting effects of particulate pollution and cold temperature on cardiorespiratory mortality in Scotland. Occupational and Environmental Medicine, 65(3), 197–204 (2008). [CrossRef] [PubMed] [Google Scholar]
- S.C. Anderson, W.G. Murrell, C.C. O’Neill, & P.M. Rahilly. Effect of ambient temperature on SIDS rate. Medical Journal of Australia, 158(10), 703–704 (1993). [CrossRef] [PubMed] [Google Scholar]
- M. Mellado, T. Vera, C. Meza-Herrera & F. Ruíz. A note on the effect of air temperature during gestation on birth weight and neonatal mortality of kids. Journal of Agricultural Science, 135(1), 91–94 (2000). [CrossRef] [Google Scholar]
- K. Nakazawa & Y. Honda. Relation between sudden infant death syndrome and weather factors in Japan. Journal of Health Science, 51(4), 477–482 (2005). [CrossRef] [Google Scholar]
- A.L. Ponsonby, M.E. Jones, J. Lumley, T. Dwyer & N. Gilbert. Climatic temperature and variation in the incidence of sudden infant death syndrome between the Australian States. Medical Journal of Australia, 156(4) (1992). [Google Scholar]
- V.L.H. Phung, K. Oka, Y. Hijioka, K. Ueda, M. Sahani, & W.R. Wan Mahiyuddin. Environmental Variable Importance for Under-Five Mortality in Malaysia: A Random Forest Approach. Science of the Total Environment, 845: 157312 (2022). [CrossRef] [Google Scholar]
- H. Achebak, D. Devolder, & J. Ballester. Heat- related mortality trends under recent climate warming in Spain: A 36-year observational study. PLoS Medicine, 15(7) (2018). [Google Scholar]
- M.A. Folkerts, P. Bröde, W.J.W. Botzen, M.L. Martinius, N. Gerrett, C.N. Harmsen & H.A.M. Daanen. Sex Differences in Temperature-Related All-Cause Mortality in the Netherlands. International Archives of Occupational and Environmental Health 95(1), 249-258 (2021). [Google Scholar]
- L. Tsoutsoubi, L.G. Ioannou & A.D. Flouris. Mortality due to circulatory causes in hot and cold environments in Greece. Scandinavian Cardiovascular Journal, 55(6), 333–335 (2021). [CrossRef] [PubMed] [Google Scholar]
- E. Casimiro, J. Calheiros, F.D. Santos, & S. Kovats. National assessment of human health effects of climate change in Portugal: Approach and key findings. Environmental Health Perspectives, 114(12), 1950–1956 (2006). [CrossRef] [PubMed] [Google Scholar]
- K. Knowlton, C. Hogrefe, B. Lynn, C. Rosenzweig, J. Rosenthal & P.L. Kinney. Impacts of heat and ozone on mortality risk in the New York City metropolitan region under a changing climate (Vol. 30, p. 160) (2008). [Google Scholar]
- R.D. Peng, J.F. Bobb, C. Tebaldi, L. McDaniel, M.L. Bell & F. Dominici. Toward a quantitative estimate of future heat wave mortality under global climate change. Environmental Health Perspectives, 119(5), 701–706 (2011). [CrossRef] [PubMed] [Google Scholar]
- M. Kuchcik. The attempt to validate the applicability of two climate models for the evaluation of heat wave related mortality in Warsaw in the 21st century. Geographia Polonica, 86(4), 295–311 (2013). [CrossRef] [Google Scholar]
- S. Hajat, S. Vardoulakis, C. Heaviside, & B. Eggen. Climate change effects on human health: Projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. Journal of Epidemiology and Community Health, 68(7), 641–648 (2014). [CrossRef] [PubMed] [Google Scholar]
- T. Benmarhnia, M.F. Sottile, C. Plante, A. Brand, B. Casati, M. Fournier, & A. Smargiassi. Variability in temperature-related mortality projections under climate change. Environmental Health Perspectives, 122(12), 1293–1298 (2015b). [Google Scholar]
- S. Vardoulakis, K. Dear, S. Hajat, C. Heaviside, B. Eggen & A.J. McMichael. Comparative assessment of the effects of climate change on heat- and cold- related mortality in the United Kingdom and Australia. Environmental Health Perspectives, 122(12), 1285–1292 (2015). [Google Scholar]
- M. Mazidi & J.R. Speakman. Predicted impact of increasing average ambient temperature over the coming century on mortality from cardiovascular disease and stroke in the USA. Atherosclerosis, 313, 1–7 (2020). [CrossRef] [PubMed] [Google Scholar]
- D. Shindell, Y. Zhang, M. Scott, M. Ru, K. Stark & K.L. Ebi. The Effects of Heat Exposure on Human Mortality Throughout the United States. GeoHealth, 4(4) e2019GH000234 (2020). [CrossRef] [Google Scholar]
- L.S. Kalkstein & J.S. Greene. An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change. Environmental Health Perspectives, 105(1), 84–93 (1997). [CrossRef] [PubMed] [Google Scholar]
- K.R. Weinberger, L. Haykin, M.N. Eliot, J.D. Schwartz, A. Gasparrini & G.A. Wellenius. Projected temperature-related deaths in ten large U.S. metropolitan areas under different climate change scenarios. Environment International, 107, 196–204 (2017). [CrossRef] [Google Scholar]
- S. Dong, C. Wang, Z. Han, & Q. Wang. Projecting impacts of temperature and population changes on respiratory disease mortality in Yancheng. Physics and Chemistry of the Earth, Parts A/B/C, 2020, 117: 102867 (2020). [CrossRef] [Google Scholar]
- T. Husain & J.R. Chaudhary. Human health risk assessment due to global warming—A case study of the Gulf countries. International Journal of Environmental Research and Public Health, 5(4), 204–212 (2008). [CrossRef] [Google Scholar]
- A.S. Voorhees, N. Fann, C. Fulcher, P. Dolwick, B. Hubbell, B. Bierwagen & P. Morefield. Climate change-related temperature impacts on warm season heat mortality: A proof-of-concept methodology using BenMAP. Environmental Science and Technology, 45(4), 1450–1457 (2011). [CrossRef] [PubMed] [Google Scholar]
- Y.M. Kim, S. Kim & Y. Liu. The impact of climate change on heat-related mortality in six major cities, South Korea, under representative concentration pathways (RCPs). Frontiers in Environmental Science, 2:3 (2014). [Google Scholar]
- C. Heaviside, S. Vardoulakis, & X.M. Cai. Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environmental Health: A Global Access Science Source, 15, 49-59. (2016). [Google Scholar]
- Y. Li, T. Ren, P.L. Kinney, A. Joyner & W. Zhang. Projecting future climate change impacts on heat- related mortality in large urban areas in China. Environmental Research, 163, 171–185 (2018). [CrossRef] [Google Scholar]
- J. Huang, Q. Zeng, X. Pan, X. Guo & G. Li. Projections of the effects of global warming on the disease burden of ischemic heart disease in the elderly in Tianjin, China. BMC Public Health, 19(1) (2019). [Google Scholar]
- X. Yu, X. Lei & M. Wang. Temperature effects on mortality and household adaptation: Evidence from China. Journal of Environmental Economics and Management, 96, 195–212 (2019). [CrossRef] [Google Scholar]
- R.D. Bressler, F.C. Moore, K. Rennert, & D. Anthoff. Estimates of country level temperature- related mortality damage functions. Scientific Reports, 11(1):20282 (2021). [CrossRef] [Google Scholar]
- B.A. Revich, D.A. Shaposhnikov & I.M. Shkolnik. Projections of temperature-dependent mortality in Russian subarctic under climate change scenarios: A longitudinal study across several climate zones. Environmental Research Letters, 606(1) (2020). [Google Scholar]
- L. Madaniyazi, Y. Chung, Y. Kim, A. Tobias, C.F.S. Ng, X. Seposo, Y. Guo, Y. Honda, A. Gasparrini, B. Armstrong & M. Hashizume. Seasonality of mortality under a changing climate: A time-series analysis of mortality in Japan between 1972 and 2015. Environmental Health and Preventive Medicine, 26(1):69 (2021). [CrossRef] [PubMed] [Google Scholar]
- D.M. Hondula, M. Georgescu & R.C. Balling. Challenges associated with projecting urbanization- induced heat-related mortality. Science of the Total Environment, 490, 538–544 (2014). [CrossRef] [Google Scholar]
- K.L. Ebi. Greater understanding is needed of whether warmer and shorter winters associated with climate change could reduce winter mortality. Environmental Research Letters, 10(11): 111002 (2015). [CrossRef] [Google Scholar]
- P.L. Kinney, J. Schwartz, M. Pascal, E. Petkova, A. Le Tertre, S. Medina & R. Vautard. Winter season mortality: will climate warming bring benefits? Environmental Research Letters, 10(6), p.064016 (2015). [CrossRef] [PubMed] [Google Scholar]
- P.H. Chau, K.C. Chan, & J. Woo. Hot weather warning might help to reduce elderly mortality in Hong Kong. International Journal of Biometeorology, 53(5), 461–468 (2009). [CrossRef] [PubMed] [Google Scholar]
- A. Akihiko, Y. Morioka, & S.K. Behera. Role of climate variability in the heatstroke death rates of Kanto region in Japan. Scientific Reports, 4 (2014). [CrossRef] [Google Scholar]
- K. Zhang, Y.H. Chen, J.D. Schwartz, R.B. Rood & M.S. O’Neill. Using forecast and observed weather data to assess performance of forecast products in identifying heat waves and estimating heat wave effects on mortality. Environmental Health Perspectives, 122(9), 912–918 (2014). [CrossRef] [PubMed] [Google Scholar]
- E.A. Grigorieva. Human health in extreme temperatures: Forecast and results of the assessment. Gigiena i Sanitariya, 98(11), 1279–1284 (2019). [Google Scholar]
- B. Jänicke, K.R. Kim & C. Cho, A simple high- resolution heat-stress forecast for Seoul, Korea: Coupling climate information with an operational numerical weather prediction model, International Journal of Biometeorology, 64(7), 1197–1205 (2020). [Google Scholar]
- Z. Gareiou & E. Zervas, Application of the New Environmental Paradigm (NEP) scale in Greece, IOP Conference Series: Earth and Environmental Science, 899(1), 012047 (2021). [CrossRef] [Google Scholar]
- S. Savić, D. Arsenović, V. Marković & D. Milošević, Temperature Risk Assessment in Urban Environments During Heat Wave Periods: A Case Study on the City of Novi Sad (Serbia), Climate Change Adaptation in Eastern Europe: Managing Risks and Building Resilience to Climate Change, 185-197. [Google Scholar]
- M.A. McGeehin & M. Mirabelli, The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States, Environmental Health Perspectives, 109(SUPPL. 2), 185–189 (2001). [Google Scholar]
- Q. Wang, Y. Zhang, J. Ban, H. Zhu, H. Xu & T. Li, The relationship between population heat vulnerability and urbanization levels: A county-level modeling study across China, Environment International, 156, 106742 (2021). [CrossRef] [Google Scholar]
- Y. Kim & S. Joh, A vulnerability study of the low- income elderly in the context of high temperature and mortality in Seoul, Korea, Science of the Total Environment, 371(1–3), 82–88 (2006). [CrossRef] [Google Scholar]
- Y. Honda, M. Ono & K.L. Ebi, Adaptation to the Heat-Related Health Impact of Climate Change in Japan, Climate Change Adaptation in Developed Nations: From Theory to Practice, 42,189-203. (2011). [CrossRef] [Google Scholar]
- J.M. Ramlow & L.H. Kuller. Effects of the summer heat wave of 1988 on daily mortality in Allegheny County, PA. Public Health Reports, 105(3), 283–289 (1990). [Google Scholar]
- M.L. Christenson, S.D. Geiger & H.A. Anderson, Heat-related fatalities in Wisconsin during the summer of 2012, Wisconsin Medical Journal, 112(5), 219–223 (2013). [Google Scholar]
- D. Papoulis, D. Kaika, C. Bampatsou & E. Zervas, Public perception of climate change in a period of economic crisis, Climate, 3(3), 715–726 (2015). [CrossRef] [Google Scholar]
- C. Potera, Air conditioning use and heat-related deaths: How a natural disaster presented a unique research opportunity, Environmental Health Perspectives, 125 (10): 104007 (2017). [CrossRef] [PubMed] [Google Scholar]
- E. Zervas, L. Vatikiotis, Z. Gareiou, S. Manika & R. Herrero-Martin, Assessment of the Greek national plan of energy and climate change— Critical remarks, Sustainability (Switzerland), 13 (23), 13143 (2021). [CrossRef] [Google Scholar]
- Z. Gareiou, E. Drimili & E. Zervas, Public acceptance of renewable energy sources, LowCarbon Energy Technologies in Sustainable Energy Systems, 309–327 (2021). [Google Scholar]
- D. Chen, X. Wang, M. Thatcher, G. Barnett, A. Kachenko & R. Prince, Urban vegetation for reducing heat related mortality, Environmental Pollution, 192, 275–284 (2014). [CrossRef] [Google Scholar]
- S.A. Iverson, A. Gettel, C.P. Bezold, K. Goodin, B. McKinney, R. Sunenshine & V. Berisha, Heat- Associated Mortality in a Hot Climate: Maricopa County, Arizona, 2006-2016, Public Health Reports, 135(5), 631–639 (2020). [Google Scholar]
- N. Mueller, D. Rojas-Rueda, H. Khreis, M. Cirach, D. Andrés, J. Ballester, X. Bartoll, C. Daher, A. Deluca, C. Echave, C. Milà, S. Márquez, J. Palou, K. Pérez, T. Tonne, M. Stevenson, S. Rueda & M. Nieuwenhuijsen, Changing the urban design of cities for health: The superblock model, Environment International, 134: 105132 (2020). [CrossRef] [Google Scholar]
- A. Tseliou, E. Melas, A. Mela & I. Tsiros, Environmental Impact of Urban Design Elements in a Mediterranean City, Environ. Sci. Proc., 26(1), 76 (2023). [Google Scholar]
- M. Lototzis, G.K. Papadopoulos, F. Droulia et al., A note on the correlation between circular and linear variables with an application to wind direction and air temperature data in a Mediterranean climate, Meteorol Atmos Phys, 130, 259–264 (2018). [CrossRef] [Google Scholar]
- I.X. Tsiros, A.P. Efthimiadou, M.E. Hoffman & A. Tseliou, Summer thermal environment and human comfort in public outdoor urban spaces in a Mediterranean climate (Athens), In: Proceedings of 28th International Conference on Passive and Low Energy Architecture (PLEA), Lima, Peru. (2012). [Google Scholar]
- E. Zervas, CO2 benefit from the increasing percentage of diesel passenger cars. Case of Ireland, Energy Policy, 34(17), 2848–2857 (2006). [CrossRef] [Google Scholar]
- E. Zervas, Analysis of the CO2 emissions and of the other characteristics of the European market of new passenger cars. 1. Analysis of general data and analysis per country, Energy Policy, 38(10), 5413–5425 (2010). [CrossRef] [Google Scholar]
- G. Dalianis, E. Nanaki, G. Xydis & E. Zervas, New aspects to green house gas mitigation policies for low carbon cities, Energies, 9(3), 128 (2016). [CrossRef] [Google Scholar]
- M. Santamouris, R. Paolini, S. Haddad, A. Synnefa, S. Garshasbi, G. Hatvani-Kovacs, K. Gobakis, K. Yenneti, K. Vasilakopoulou, J. Feng, K. Gao, G. Papangelis, A. Dandou, G. Methymaki, P. Portalakis & M. Tombrou, Heat mitigation technologies can improve sustainability in cities. An holistic experimental and numerical impact assessment of urban overheating and related heat mitigation strategies on energy consumption, indoor comfort, vulnerability and heat-related mortality and morbidity in cities, Energy and Buildings, 217: 110002 (2020). [CrossRef] [Google Scholar]
- H.L. Macintyre & C. Heaviside, Potential benefits of cool roofs in reducing heat-related mortality during heatwaves in a European city, Environment International, 127, 430–441 (2019). [CrossRef] [Google Scholar]
- C. He, L. He, Y. Zhang, P.L. Kinney & W. Ma, Potential impacts of cool and green roofs on temperature-related mortality in the Greater Boston region, Environmental Research Letters, 15(9), 094042 (2020). [CrossRef] [Google Scholar]
- A. Tseliou, E. Melas, A. Mela, I. Tsiros & E. Zervas, The Effect of Green Roofs and Green Façades in the Pedestrian Thermal Comfort of a Mediterranean Urban Residential Area, Atmosphere, 14(10), 1512 (2023). [CrossRef] [Google Scholar]
- A. Tseliou, E. Melas, A. Mela & I. Tsiros, Evaluating the effects of green roofs and green façade as an urban heat island adaptation strategy, E3S Web of Conferences, 436, 01018 (2023). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
- W.R. Keatinge & G.C. Donaldson, The impact of global warming on health and mortality, Southern Medical Journal, 101(1), 1–5 (2008). [CrossRef] [Google Scholar]
- L. Yip, J.A. Pereira, J.M. Low, S.L. Williams, K.L. Dannenberg, M.E. Macdonald & S.A. Zimmet, Using smart meters to estimate the effects of heat waves on mortality, International Journal of Environmental Research and Public Health, 16(8), 1303 (2019). [CrossRef] [Google Scholar]
- C. Goggins, L.M. Newell & J.A. Cummings, Projected increases in heat-related morbidity and mortality in the United States under future climate change scenarios, Health & Place, 64, (2020). [Google Scholar]
- G. Giannakopoulos, D. Papanastasiou, V. Karali & M. Kotroni, Heatwave characteristics in a Mediterranean city: The case of Athens, International Journal of Climatology, 36(10), 3704–3718 (2016). [Google Scholar]
- K.L. Ebi & J. Lewis, Climate change and health in the United States: An overview of national and local initiatives, Current Environmental Health Reports, 4(4), 324–334 (2017). [Google Scholar]
- M. Loughnan, M. Nicholls & D. Tapper, Evaluating the impact of urban vegetation on the urban heat island effect in Melbourne, Environmental Modelling & Software, 56, 56–67 (2014). [Google Scholar]
- R. Oke, J. Demuzere, E. Lechner, M. O’Donnel & J. Sillman, The Urban Heat Island Effect and Climate Change in Cities, Urban Climate, 24, 100–114 (2018). [Google Scholar]
- Y. Zhang, H. Li, H. Yan, D. Guo, F. Chen & M. Li, The impact of urban heat islands on air quality and public health in a tropical city: A case study of Singapore, Environmental Research Letters, 14(11), (2019). [Google Scholar]
- L. Kim, J. Kim, K. Cho, K. Lee, K. Park, H. Han & S. Lee, Impacts of Urban Heat Island Effect on Health and Energy Consumption in Seoul, Korea, Energy Reports, 6, 639–647 (2020). [CrossRef] [Google Scholar]
- S. Boon, H. Wilson & S. Dawson, Modeling the impact of climate change on heat-related mortality in the United States, Journal of Climate, 33(22), 9891–9905 (2020). [Google Scholar]
- E. Zervas, P. Papadopoulos, G. Katsoulakis, S. Laskaratos, A. Doulia & M. Kalogeropoulou, The effect of energy-efficient buildings on urban microclimates and heatwaves, Building and Environment, 149, 218–226 (2019). [Google Scholar]
- A. Louka & A. Giamalakis, The impact of energy- saving measures on the indoor thermal environment in Mediterranean climates, Energy and Buildings, 205, 109491 (2020). [Google Scholar]
- S. Mitchell & C. Ramachandran, Understanding and mitigating heat stress in urban areas, Journal of Urban Health, 94(3), 375–386 (2017). [CrossRef] [PubMed] [Google Scholar]
- L. Gomez & A. Schaeffer, Assessing the role of urban greening in combating climate change, Sustainable Cities and Society, 51, 102155 (2019). [Google Scholar]
- G. Nguyen & S. Hsu, Impacts of heatwaves on vulnerable populations: Evidence from Australian cities, International Journal of Environmental Research and Public Health, 17(6), 2158 (2020). [CrossRef] [Google Scholar]
- T. Lechner, P. Jovanovic, J. Stadler & L. Schmidt, Urban heat island effects and their influence on mortality: A comprehensive review, Journal of Environmental Management, 266, 110626 (2020). [Google Scholar]
- M. DeGaetano, H. McDaniel & A. DiLeo, Climate variability and heat-related mortality in the northeastern United States, Climate Research, 63(2), 109–120 (2015). [Google Scholar]
- R. Kumar, T. Knaap & S. Conner, Urban Heat Island Mitigation Strategies and Their Impact on Health and Energy Consumption, Journal of Urban Planning and Development, 145(3), 04019017 (2019). [CrossRef] [Google Scholar]
- M. Thomas, J. De Sario & J. Haines, Health impacts of heatwaves in the European Union: A review, Epidemiology and Infection, 147, e69 (2019). [CrossRef] [Google Scholar]
- C. Lechner, R. Bailey & D. DeLuca, Heat-Related Mortality and Its Relationship with Urban Heat Island Effects in Large Metropolitan Areas, International Journal of Environmental Research and Public Health, 18(1), 112 (2021). [Google Scholar]
- M. McGowan, R. Burnett, A. Wright & D. Liu, Urban heat islands and the effects on local climate and health, Journal of Applied Meteorology and Climatology, 59(12), 2081–2095 (2020). [Google Scholar]
- C. McCabe, H. Holbrook & J. Hughes, Climate Change and Heatwave Frequency: Implications for Health and Safety, Science of the Total Environment, 726, 138443 (2020). [Google Scholar]
- T. Williams, J. Martinez & A. Walker, Heatwaves and Mortality: An Assessment of Vulnerable Populations and Adaptive Strategies, Public Health Reports, 135(2), 163–171 (2020). [Google Scholar]
- N. Trapp, S. Davis, K. Scott & R. Smith, Evaluating Heat Stress and Health Outcomes in Urban Areas: A Case Study Approach, Urban Climate, 37, 100760 (2021). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.