Open Access
Issue
E3S Web Conf.
Volume 588, 2024
Euro-Asian Conference on Sustainable Nanotechnology, Environment, & Energy (SNE2-2024)
Article Number 02018
Number of page(s) 15
Section Nanomaterials in Environment and Energy
DOI https://doi.org/10.1051/e3sconf/202458802018
Published online 08 November 2024
  1. A. A. B. Moghal, M. Ashfaq, A. A. K. H. Al-Obaid, M. F. Abbas, A. M. Al-Mahbashi, A. A. Shaker, Compaction delay and its effect on the geotechnical properties of lime treated semi-arid soils. Road Mater. Pavement Des. 22, 2626-2640 (2021). [CrossRef] [Google Scholar]
  2. B. Ramanjaneyulu, N. D. Kumar, Effect of marble dust on UCS and CBR of gypsum stabilized clay. Civil Eng. Archit. 12, 685-696 (2024). https://doi.org/10.13189/cea.2024.120203. [CrossRef] [Google Scholar]
  3. B. Ramanjaneyulu, N. D. Kumar, Influence of CaCl₂ on compaction and CBR characteristics of gypsum (CaSO₄·2H₂O) stabilized high plastic clay. In Ground Characterization and Foundations: Proceedings of Indian Geotechnical Conference 2020 Volume 1, 109-118 (Springer, Singapore, 2022). [Google Scholar]
  4. M. T. Fernandez, S. Orlandi, M. Codevilla, T. M. Piqué, D. Manzanal, Performance of calcium lignosulfonate as a stabiliser of highly expansive clay. Transp. Geotech. 27, 100469 (2021). https://doi.org/10.1016/j.trgeo.2020.100469. [CrossRef] [Google Scholar]
  5. B. Ramanjaneyulu, N. D. Kumar, Effect of marble dust on UCS and CBR of gypsum stabilized clay. Civil Eng. Archit. 12, 685-696 (2024). https://doi.org/10.13189/cea.2024.120203. [CrossRef] [Google Scholar]
  6. G. Y. Li, X. Hou, Y. H. Mu, W. Ma, F. Wang, Y. Zhou, Y. C. Mao, Engineering properties of loess stabilized by a type of eco-material, calcium lignosulfonate. Arab. J. Geosci. 12, 1-10 (2019). https://doi.org/10.1007/s12517-018-4201-2. [CrossRef] [Google Scholar]
  7. D. Wu, W. She, L. Wei, W. Zuo, X. Hu, J. Hong, C. Miao, Stabilization mechanism of calcium lignosulphonate used in expansion sensitive soil. J. Wuhan Univ. Technol.- Mater. Sci. Ed. 35, 847-855 (2020). https://doi.org/10.1007/s11595-020-2334-x. [CrossRef] [Google Scholar]
  8. S. G. Ji, B. Z. Wang, X. J. Yang, H. H. Fan, Experimental study of dispersive clay modified by calcium lignosulfonate. Rock Soil Mech. 42, 3 (2021). https://doi.org/10.16285/j.rsm.2021.0397. [Google Scholar]
  9. A. U. Ravishankar, B. J. Panditharadhya, K. J. C. Reddy, S. Amulya, Experimental investigation of lateritic soil treated with calcium lignosulfonate. In Proceedings of the Indian Geotechnical Conference, 1-7 (Indian Geotechnical Society, 2017). [Google Scholar]
  10. D. P. Alazigha, B. Indraratna, J. S. Vinod, A. Heitor, Mechanisms of stabilization of expansive soil with lignosulfonate admixture. Transp. Geotech. 14, 81-92 (2018). https://doi.org/10.1016/j.trgeo.2018.01.006. [CrossRef] [Google Scholar]
  11. V. Chiranjeevi, K. Singh, D. Kishan, Soil stabilization by integrating dust particles with calcium lignosulfonate. Prog. Phys. Geogr. Earth Environ., 03091333231209157 (2023). https://doi.org/10.1177/03091333231209157. [Google Scholar]
  12. C. Neeladharan, P. Sathish, A. Nandhini, R. Priya, I. S. Fathima, J. Srimathi, V. Melvisharam, Stabilization of soil by using marble dust with sodium silicate as binder. Int. J. Adv. Res. Trends Eng. Technol. 5, 45-49 (2018). [Google Scholar]
  13. M. A. Kumar, A. A. B. Moghal, K. Vydehi, A. Almajed, Embodied energy in the production of guar and xanthan biopolymers and their cross-linking effect in enhancing the geotechnical properties of cohesive soil. Buildings 13, 2304 (2023). https://doi.org/10.3390/buildings13092304. [CrossRef] [Google Scholar]
  14. R. Ali, H. Khan, A. A. Shah, Expansive soil stabilization using marble dust and bagasse ash. Int. J. Sci. Res. 3, 2812-2816 (2014). [Google Scholar]
  15. T. S. Keertan, T. M. Priya, J. Bommisetty, Comparative study on RCC frames subjected to blast and earthquake loading. Mater. Today Proc. (2023). [Google Scholar]
  16. T. S. Keertan, M. S. Kumar, J. Bommisetty, Seismic performance evaluation of RC tall buildings irregular in plan with varied location of fluid viscous damper – A comparative study. AIP Conf. Proc. 3010, 1 (2024). [Google Scholar]
  17. R. M. Rasheed, A. A. B. Moghal, Primary and secondary consolidation characteristics of chitosan-treated low organic clay. In Geo-Congress 2024, 228-237 (2024). [Google Scholar]
  18. A. Almajed, A. A. B. Moghal, M. Nuruddin, S. A. S. Mohammed, Comparative studies on the strength and swell characteristics of cohesive soils using lime and modified enzyme-induced calcite precipitation technique. Buildings 14, 909 (2024). [CrossRef] [Google Scholar]
  19. A. Almajed, M. A. Lateef, A. A. B. Moghal, K. Lemboye, State-of-the-art review of the applicability and challenges of microbial-induced calcite precipitation (MICP) and enzyme-induced calcite precipitation (EICP) techniques for geotechnical and geoenvironmental applications. Crystals 11, 370 (2021). [CrossRef] [Google Scholar]
  20. M. A. Kumar, A. A. B. Moghal, J. Bommisetty, N. Mohammad, Efficacy of cross- linking of biopolymers in soil stabilization. In Proceedings of the Indian Geotechnical Conference 2022 Volume 4: Geotechnics: Learning, Evaluation, Analysis and Practice (GEOLEAP), 163 (Springer Nature, 2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.