Open Access
Issue |
E3S Web Conf.
Volume 588, 2024
Euro-Asian Conference on Sustainable Nanotechnology, Environment, & Energy (SNE2-2024)
|
|
---|---|---|
Article Number | 02019 | |
Number of page(s) | 9 | |
Section | Nanomaterials in Environment and Energy | |
DOI | https://doi.org/10.1051/e3sconf/202458802019 | |
Published online | 08 November 2024 |
- D. E. Kuhn, M. M. Martin, D. S. Feldman, A. V. T. Jr, J. Gerard, and T. S. Elton, “Experimental Validation of miRNA Targets,” vol. 44, no. 1, pp. 47–54, 2009. [Google Scholar]
- C. Xu, S. Wu, W. Zhao, T. Mipam, and J. Liu, “Differentially expressed microRNAs between cattleyak and yak testis,” Sci Rep, no. July 2017, pp. 1–12, 2018, doi: 10.1038/s41598-017-18607-0. [Google Scholar]
- P. K. Singh, A. V. Singh, and D. S. Chauhan, “Current understanding on micro RNAs and its regulation in response to Mycobacterial infections,” pp. 1–9, 2013. [Google Scholar]
- N. Meola, V. A. Gennarino, and S. Banfi, “microRNAs and genetic diseases,” vol. 14, pp. 1–14, 2009, doi: 10.1186/1755-8417-2-7. [Google Scholar]
- J. Singh, C. S. Mukhopadhyay, S. Kaur, P. Malhotra, R. S. Sethi, and R. K. Choudhary, “Identification of the MicroRNA repertoire in TLR-ligand challenged bubaline PBMCs as a model of bacterial and viral infection,” PLoS One, vol. 11, no. 6, pp. 1–15, 2016, doi: 10.1371/journal.pone.0156598. [Google Scholar]
- Guido Hegasy, “HIF Nobel Prize Physiology Medicine 2019 Hegasy ENG.png,” 2019. [Google Scholar]
- J. Singh et al., “MicroRNA expression profiling in PBMCs of Indian water Buffalo (Bubalus bubalis) infected with Brucella and Johne’s disease,” ExRNA, vol. 2, no. 1, 2020, doi: 10.1186/s41544-020-00049-y. [CrossRef] [Google Scholar]
- L. Sun et al., “Different erythrocyte MicroRNA profiles in low- and high- altitude individuals,” Front Physiol, vol. 9, no. AUG, 2018, doi: 10.3389/fphys.2018.01099. [Google Scholar]
- A. A. Kiani, H. Elyasi, S. Ghoreyshi, N. Nouri, A. Safarzadeh, and A. Nafari, “Study on hypoxia-inducible factor and its roles in immune system,” Immunol Med, vol. 44, no. 4, pp. 223–236, Oct. 2021, doi: 10.1080/25785826.2021.1910187. [CrossRef] [PubMed] [Google Scholar]
- V. L. Dengler, M. Galbraith, and J. M. Espinosa, “Transcriptional Regulation by Hypoxia Inducible Factors,” 1998, doi: 10.3109/10409238.2013.838205. [Google Scholar]
- K. Nakayama and N. Kataoka, “Regulation of Gene Expression under Hypoxic Conditions,” 2019. [Google Scholar]
- A. A. Kiani, H. Elyasi, S. Ghoreyshi, N. Nouri, A. Safarzadeh, and A. Nafari, “Study on hypoxia-inducible factor and its roles in immune system,” Immunol Med, vol. 44, no. 4, pp. 223–236, Oct. 2021, doi: 10.1080/25785826.2021.1910187. [CrossRef] [PubMed] [Google Scholar]
- W. Ayalew, M. Chu, C. Liang, X. Wu, and P. Yan, “Adaptation Mechanisms of Yak (Bos grunniens) to High-Altitude Environmental Stress,” Animals, vol. 11, no. 8, p. 2344, Aug. 2021, doi: 10.3390/ani11082344. [CrossRef] [PubMed] [Google Scholar]
- Y. Zheng et al., “Global Insights into Chronic Obstructive Pulmonary Disease and Coronary Artery Disease: A Systematic Review and Meta- Analysis of 6,400,000 Patients,” Rev Cardiovasc Med, vol. 25, no. 1, p. 25, Jan. 2024, doi: 10.31083/j.rcm2501025. [CrossRef] [PubMed] [Google Scholar]
- M. Serocki, S. Bartoszewska, A. Janaszak, J. Renata, and J. O. James, “miRNAs regulate the HIF switch during hypoxia : a novel therapeutic target,” Angiogenesis, vol. 21, no. 2, pp. 183–202, 2018, doi: 10.1007/s10456-018-9600-2. [CrossRef] [PubMed] [Google Scholar]
- W. G. Kaelin and P. J. Ratcliffe, “Oxygen Sensing by Metazoans: The Central Role of the HIF Hydroxylase Pathway,” Mol Cell, vol. 30, no. 4, pp. 393–402, May 2008, doi: 10.1016/j.molcel.2008.04.009. [CrossRef] [PubMed] [Google Scholar]
- Á. L. Riffo-Campos, I. Riquelme, and P. Brebi-Mieville, “Tools for Sequence-Based miRNA Target Prediction: What to Choose?,” Int J Mol Sci, vol. 17, no. 12, Dec. 2016, doi: 10.3390/ijms17121987. [Google Scholar]
- J. Singh et al., “MicroRNA expression profiling in PBMCs of Indian water Buffalo (Bubalus bubalis) infected with Brucella and Johne’s disease,” ExRNA, vol. 2, no. 1, 2020, doi: 10.1186/s41544-020-00049-y. [CrossRef] [Google Scholar]
- H. Wang, J. Zhong, J. Wang, Z. Chai, and C. Zhang, “Whole-Transcriptome Analysis of Yak and Cattle Heart Tissues Reveals Regulatory Pathways Associated With High-Altitude Adaptation,” vol. 12, no. May, pp. 1–15, 2021, doi: 10.3389/fgene.2021.579800. [Google Scholar]
- J. Guan et al., “Comparative analysis of the microRNA transcriptome between yak and cattle provides insight into high-altitude adaptation,” PeerJ, vol. 2017, no. 11, pp. 1–18, 2017, doi: 10.7717/peerj.3959. [Google Scholar]
- Y. X. Li et al., “Susceptibility to high-altitude pulmonary edema is associated with circulating miRNA levels under hypobaric hypoxia conditions,” Front Physiol, vol. 9, no. 1, pp. L360–L368, 2020, doi: 10.1055/a-1390-1713. [Google Scholar]
- J. K. Dhanoa, J. Singh, A. Singh, J. S. Arora, R. S. Sethi, and C. S. Mukhopadhyay, “ExRNA Discovery of isomiRs in PBMCs of diseased vis- à-vis healthy Indian water buffaloes,” pp. 1–12, 2019. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.