Open Access
Issue
E3S Web Conf.
Volume 591, 2024
International Conference on Renewable Energy Resources and Applications (ICRERA-2024)
Article Number 04001
Number of page(s) 13
Section Electrical Vehicle System
DOI https://doi.org/10.1051/e3sconf/202459104001
Published online 14 November 2024
  1. Ueda, M., Hirota, T., and A. Hatano. “Challenges of Widespread Marketplace Acceptance of Electric Vehicles—Towards a Zero-Emission Mobility Society.” SAE Technical Paper, 2010. [Google Scholar]
  2. Vidal, C., Malysz, P., Kollmeyer, P., and A. Emadi. “Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of- the-Art.” IEEE Access, vol. 8, 2020, pp. 52796–52814. [CrossRef] [Google Scholar]
  3. Waag, W., and D. U. Sauer. “Adaptive Estimation of the Electromotive Force of the Lithium-Ion Battery after Current Interruption for an Accurate State-of-Charge and Capacity Determination.” Applied Energy, vol. 111, 2013, pp. 416–427. [CrossRef] [Google Scholar]
  4. Wang, Q. “Battery State of Charge Estimation Based on Multi-Model Fusion.” Chinese Automation Congress (CAC), 2019, pp. 2036–2041. [Google Scholar]
  5. Wang, Y., Chen, Z., and C. Zhang. “On-Line Remaining Energy Prediction: A Case Study in Embedded Battery Management System.” Applied Energy, vol. 194, 2017, pp. 688–695. [CrossRef] [Google Scholar]
  6. Wang, Z., and C. Du. “A Comprehensive Review on Thermal Management Systems for Power Lithium-Ion Batteries.” Renewable and Sustainable Energy Reviews, vol. 139, 2021, 110685. [Google Scholar]
  7. Wang, Q., Jiang, B., Li, B., and Y. Yan. “A Critical Review of Thermal Management Models and Solutions of Lithium- Ion Batteries for the Development of Pure Electric Vehicles.” Renewable and Sustainable Energy Reviews, vol. 64, 2016, pp. 106–128. [CrossRef] [Google Scholar]
  8. Wang, D., Li, X., Wang, J., Zhang, Q., Yang, B., and Z. Hao. “Lithium-Ion Battery Equivalent Model over Full- Range State of Charge Based on Electrochemical Process Simplification.” Electrochimica Acta, vol. 389, 2021, 138698. [CrossRef] [Google Scholar]
  9. Wang, C. C., Lu, W. J., and S. S. Wang. “An On-Chip High- Voltage Current Sensor for Battery Module Monitoring.” IEEE International Conference on IC Design & Technology, 2014, pp. 1–4. [Google Scholar]
  10. Wang, Y., Tian, J., Sun, Z., Wang, L., Xu, R., Li, M., et al. “A Comprehensive Review of Battery Modeling and State Estimation Approaches for Advanced Battery Management Systems.” Renewable and Sustainable Energy Reviews, vol. 131, 2020, 110015. [CrossRef] [Google Scholar]
  11. Wang, H. F., and Q. Xu. “Materials Design for Rechargeable Metal-Air Batteries.” Matter, vol. 1, 2019, pp. 565–595. [CrossRef] [Google Scholar]
  12. Wang, P., Zhang, X., Yang, L., Zhang, X., Yang, M., and H. Chen. “Real-Time Monitoring of Internal Temperature Evolution of the Lithium-Ion Coin Cell Battery During the Charge and Discharge Process.” Extreme Mechanics Letters, vol. 9, 2016, pp. 459–466. [CrossRef] [Google Scholar]
  13. Wei, S., Xu, S., Agrawal, A., Choudhury, S., Lu, Y., and Z. Tu. “A Stable Room-Temperature Sodium–Sulfur Battery.” Nature Communications, vol. 7, 2016, 11722. [CrossRef] [PubMed] [Google Scholar]
  14. Whittingham, M. S. “Electrical Energy Storage and Intercalation Chemistry.” Science, vol. 192, 1976, pp. 1126–1127. [CrossRef] [PubMed] [Google Scholar]
  15. Whittingham, M. S. “Lithium Batteries and Cathode Materials.” Chemical Reviews, vol. 104, 2004, pp. 4271–4302. [CrossRef] [PubMed] [Google Scholar]
  16. Whittingham, M. S. “History, Evolution, and Future Status of Energy Storage.” Proceedings of the IEEE, vol. 100, 2012, pp. 1518–1534. [CrossRef] [Google Scholar]
  17. G. Ranjith Kumar, K.N.V Prasad, “Minimization of Torque Ripple Content for BLDC Motor by Current Controller using MLI” in Procedia Engineering, vol. 38, pp. 3113-3121, 2012/01/01/ 2012.doi: 10.1016/j.proeng.2012.06.362 [CrossRef] [Google Scholar]
  18. Wong, Y. S., and C. C. Chan. Vehicle Energy Storage: Batteries. Springer, 2012. [Google Scholar]
  19. Wu, S.-L., Chen, H.-C., and M.-Y. Tsai. “AC Impedance- Based Online State-of-Charge Estimation for Li-Ion Batteries.” Sensors and Materials, vol. 30, 2018, pp. 539–550. [CrossRef] [Google Scholar]
  20. Wu, Y., Wang, W., Ming, J., Li, M., Xie, L., He, X., et al. “An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium- Ion Battery.” Advanced Functional Materials, vol. 29, 2019, 1805978. [CrossRef] [Google Scholar]
  21. Wu, B., Widanage, W. D., Yang, S., and X. Liu. “Battery Digital Twins: Perspectives on the Fusion of Models, Data and Artificial Intelligence for Smart Battery Management Systems.” Energy AI, vol. 1, 2020, 100016. [CrossRef] [Google Scholar]
  22. D Gireesh Kumar, N V Sireesha, DSNM Rao, L Kasireddy, Bharath K N, Ranjith Kumar Gatla, P. Chandra Babu, S. Saravanan “Modelling of symmetric switched capacitor multilevel inverter for high power appliances”, Journal of New Materials for Electrochemical Systems, Vol. 26, No.1, pp.18-25, doi:doi:10.14447/jnmes.v26i1.a03, 2023 [CrossRef] [Google Scholar]
  23. Senthil, C., Park, J. W., Shaji, N., Sim, G. S., and C. W. Lee. “Biomass Seaweed-Derived Nitrogen Self-Doped Porous Carbon Anodes for Sodium-Ion Batteries: Insights into the Structure and Electrochemical Activity.” Journal of Energy Chemistry, vol. 64, 2022, pp. 286–295. [CrossRef] [Google Scholar]
  24. Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., et al. “Data-Driven Prediction of Battery Cycle Life Before Capacity Degradation.” Nature Energy, vol. 4, 2019, pp. 383–391. [CrossRef] [Google Scholar]
  25. Shang, Y., Lu, G., Kang, Y., Zhou, Z., Duan, B., and C. Zhang. “A Multi-Fault Diagnosis Method Based on Modified Sample Entropy for Lithium-Ion Battery Strings.” Journal of Power Sources, vol. 446, 2020, 227275. [CrossRef] [Google Scholar]
  26. Shen, J., Dusmez, S., and A. Khaligh. “Optimization of Sizing and Battery Cycle Life in Battery/Ultracapacitor Hybrid Energy Storage Systems for Electric Vehicle Applications.” IEEE Transactions on Industrial Informatics, vol. 10, 2014, pp. 2112–2121. [CrossRef] [Google Scholar]
  27. Shen, S., Sadoughi, M., Li, M., Wang, Z., and C. Hu. “Deep Convolutional Neural Networks with Ensemble Learning and Transfer Learning for Capacity Estimation of Lithium- Ion Batteries.” Applied Energy, vol. 260, 2020, 114296. [CrossRef] [Google Scholar]
  28. Shen, Y., Zhang, Q., Wang, Y., Gu, L., Zhao, X., and X. Shen. “A Pyrite Iron Disulfide Cathode with a Copper Current Collector for High-Energy Reversible Magnesium- Ion Storage.” Advanced Materials, vol. 33, 2021, 2103881. [CrossRef] [Google Scholar]
  29. Singirikonda, S., and Y. Obulesu. “Active Cell Voltage Balancing of Electric Vehicle Batteries by Using an Optimized Switched Capacitor Strategy.” Journal of Energy Storage, vol. 38, 2021, 102521. [CrossRef] [Google Scholar]
  30. Slater, M. D., Kim, D., Lee, E., and C. S. Johnson. “Sodium- Ion Batteries.” Advanced Functional Materials, vol. 23, 2013, pp. 947–958. [CrossRef] [Google Scholar]
  31. Som, T., Dwivedi, M., Dubey, C., and A. Sharma. “Parametric Studies on Artificial Intelligence Techniques for Battery SOC Management and Optimization of Renewable Power.” Procedia Computer Science, vol. 167, 2020, pp. 353–362. [CrossRef] [Google Scholar]
  32. Song, Y., Liu, D., Liao, H., and Y. Peng. “A Hybrid Statistical Data-Driven Method for On-Line Joint State Estimation of Lithium-Ion Batteries.” Applied Energy, vol. 261, 2020, 114408. [CrossRef] [Google Scholar]
  33. Song, Y., and Y. Peng. “Model-Based Health Diagnosis for Lithium-Ion Battery Pack in Space Applications.” IEEE Transactions on Industrial Electronics, vol. 68, 2021, pp. 12375–12384. [CrossRef] [Google Scholar]
  34. K. N. V. Prasad, G. R. Kumar, Y. S. A. Kumar and G. S. Narayana, “Realization of cascaded H-bridge 5-Level multilevel inverter as Dynamic Voltage Restorer,” 2013 International Conference on Computer Communication and Informatics, Coimbatore, India, 2013, pp. 1-6, doi: 10.1109/ICCCI.2013.6466136. [Google Scholar]
  35. Song, M., Tan, H., Chao, D., and H. J. Fan. “Recent Advances in Zn-Ion Batteries.” Advanced Functional Materials, vol. 28, 2018, 1802564. [CrossRef] [Google Scholar]
  36. Sudworth, J. “The Sodium/Nickel Chloride (ZEBRA) Battery.” Journal of Power Sources, vol. 100, 2001, pp. 149–163. [CrossRef] [Google Scholar]
  37. Sun, L., Li, G., and F. You. “Combined Internal Resistance and State-of-Charge Estimation of Lithium-Ion Battery Based on Extended State Observer.” Renewable and Sustainable Energy Reviews, vol. 131, 2020, 109994. [CrossRef] [Google Scholar]
  38. Kurucan, M., Özbaltan, M., Yetgin, Z., & Alkaya, A, “Applications of artificial neural network-based battery management systems: A literature review”, Journal of Energy Storage, Vol.65, Article ID: 106409, 2024, https://doi.org/10.1016/j.est.2023.106409. [Google Scholar]
  39. D. G. Kumar, A. Ganesh, D. S. N. M. Rao, N. V. Sireesha, R. K. Gatla and S. Saravanan, “Grid Integration of Photovoltaic System with a Single-Phase Reduced Switch Multilevel Inverter Topology,” 2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT), Hyderabad, India, 2022, pp. 1-6, doi: 10.1109/SeFeT55524.2022.9909189. [Google Scholar]
  40. Sun, D., Yu, X., Wang, C., Zhang, C., Huang, R., Zhou, Q., et al. “State of Charge Estimation for Lithium-Ion Battery Based on an Intelligent Adaptive Extended Kalman Filter with Improved Noise Estimator.” Energy, vol. 214, 2021, 119025. [CrossRef] [Google Scholar]
  41. Sun, H., Zhu, G., Zhu, Y., Lin, M. C., Chen, H., Li, Y. Y., et al. “High-Safety and High-Energy-Density Lithium Metal Batteries in a Novel Ionic-Liquid Electrolyte.” Advanced Materials, vol. 32, 2020, 2001741. [CrossRef] [Google Scholar]
  42. Lipu, M.S.H.; Miah, M. S.; Jamal, T.; Rahman, T.; Ansari, S.; Rahman, M. S.; Ashique, R. H.; Shihavuddin, A.S.M.; Shakib, M.N. Artificial Intelligence Approaches for Advanced Battery Management System in Electric Vehicle Applications: A Statistical Analysis towards Future Research Opportunities. Vehicles 2024, 6, 22–70. https://doi.org/10.3390/ vehicles6010002. [Google Scholar]
  43. Nagendra Vara Prasad Kuraku, Yi-Gang He, Tiancheng Shi, Ranjith kumar Gatla, and Ruan Yi “Fuzzy Logic based Open-circuit Fault Diagnosis in IGBT for CMLI fed PMSM Drive”, Microelectronics Reliability. Elsevier publication, pp. 113415, 2019, doi: 10.1016/j.microrel.2019.113415. [Google Scholar]
  44. Tan, W. K., Kawamura, G., Muto, H., and A. Matsuda. “Current Progress in the Development of Fe-Air Batteries and Their Prospects for Next-Generation Batteries.” Sustainable Materials for Next Generation Energy Devices, Elsevier, 2021, pp. 59–83. [Google Scholar]
  45. Tang, X., Liu, K., Wang, X., Gao, F., Macro, J., and W. D. Widanage. “Model Migration Neural Network for Predicting Battery Aging Trajectories.” IEEE Transactions on Transportation Electrification, vol. 6, 2020, pp. 363–374. [CrossRef] [Google Scholar]
  46. Devineni Gireesh Kumar, Nagineni Venkata Sireesha, Neerudi Bhoopal, Ranjith Kumar Gatla, Hossam Kotb, Kareem M. AboRas, Ali Elrashidi, Mohammed Alqarni, Yazeed Yasin Ghadi, Adel Oubelaid, “Application of soft computing algorithms for hybrid modular multilevel inverters”, Measurement: Sensors, Elsevier publication, Vol. 31, pp.100999, 2024, ISSN 2665-9174, doi:10.1016/j.measen.2023.100999. [CrossRef] [Google Scholar]
  47. G. R Kumar, M. Arun Noyal Doss, K. N. V. Prasad and K. C. Jayasankar, “Modeling and speed control of permanent magnet synchronous Motor at constant load torque using PSIM,” International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2011), Chennai, 2011, pp. 485-489, doi: 10.1049/cp.2011.0411. [Google Scholar]
  48. Tarascon, J., and M. Armand. “Issues and Challenges Facing Rechargeable Lithium Batteries.” Nature, vol. 414, 2011, pp. 359–367. [Google Scholar]
  49. Thackeray, M. M., Wolverton, C., and E. D. Isaacs. “Electrical Energy Storage for Transportation— Approaching the Limits of, and Going Beyond, Lithium-Ion Batteries.” Energy & Environmental Science, vol. 5, 2012, pp. 7854–7863. [CrossRef] [Google Scholar]
  50. Thangavel, V., Guerrero, O. X., Quiroga, M., Mikala, A. M., Rucci, A., and A. A. Franco. “A Three Dimensional Kinetic Monte Carlo Model for Simulating the Carbon/Sulfur Mesostructural Evolutions of Discharging Lithium Sulfur Batteries.” Energy Storage Materials, vol. 24, 2020, pp. 472–485. [CrossRef] [Google Scholar]
  51. Tian, X., Chau, K. T., Liu, W., and C. H. T. Lee. “Selective Wireless Power Transfer Using Magnetic Field Editing.” IEEE Transactions on Power Electronics, vol. 36, 2021, pp. 2710–2719. [CrossRef] [Google Scholar]
  52. Bhoopal, N., Rao, D.S.M., Sireesha, N.V., Kasireddy, I., Ranjith kumar Gatla., Kumar, D.G, “Modelling and performance evaluation of 18w PEM fuel cell considering H2 pressure variations”, Journal of New Materials for Electrochemical Systems, Vol. 25, No. 1, pp. 1-6. 2022, doi:10.14447/jnmes.v25i1.a01 [CrossRef] [Google Scholar]
  53. “Toshiba SCiBTM Technology.” Toshiba, 2022. Available online: https://www.global.toshiba/ww/products- solutions/battery/scib.html. [Google Scholar]
  54. Trimboli, M. S., Souza, A. K. d., and M. A. Xavier. “Stability and Control Analysis for Series-Input/Parallel- Output Cell Balancing System for Electric Vehicle Battery Packs.” IEEE Control Systems Letters, vol. 6, 2022, pp. 1388–1393. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.