Open Access
Issue
E3S Web Conf.
Volume 591, 2024
International Conference on Renewable Energy Resources and Applications (ICRERA-2024)
Article Number 04002
Number of page(s) 11
Section Electrical Vehicle System
DOI https://doi.org/10.1051/e3sconf/202459104002
Published online 14 November 2024
  1. Zhang, Y., Li, X., & Wang, Q. (2019). “Deep reinforcement learning for energy management of distributed resources.” Energy, 181(3), 345-358. DOI: 10.1016/j.energy.2019.01.056. [CrossRef] [Google Scholar]
  2. Li, M., & Xu, J. (2020). “Fuzzy logic-based control strategy for smart EV charging stations.” IEEE Transactions on Industrial Electronics, 67(12), 7895-7904. DOI: 10.1109/TIE.2020.2998487. [Google Scholar]
  3. Wang, Z., Liu, J., & Zhao, Y. (2020). “Hybrid energy management system using genetic algorithms and model predictive control.” Renewable Energy, 156, 1163-1173. DOI: 10.1016/j.renene.2020.04.012. [Google Scholar]
  4. Chen, H., Zhou, P., & Yang, K. (2021). “AI-driven energy management system for smart EV charging stations.” IEEE Access, 9, 44790-44800. DOI: 10.1109/ACCESS.2021.3062948. [Google Scholar]
  5. Rahman, M., Hossain, M., & Ding, X. (2021). “Particle swarm optimization for energy management in microgrids with EVs.” Applied Energy, 286, 116558. DOI: 10.1016/j.apenergy.2021.116558. [Google Scholar]
  6. Gupta, A., & Singh, P. (2022). “Reinforcement learning for supply-demand balancing in EV charging stations.” Journal of Renewable and Sustainable Energy, 14(1), 14532. DOI: 10.1063/5.0081287. [CrossRef] [Google Scholar]
  7. Ahmed, R., Kumar, V., & Singh, A. (2022). “Adaptive EMS using artificial neural networks for EV charging.” IEEE Transactions on Smart Grid, 13(3), 1879-1889. DOI: 10.1109/TSG.2022.3140914. [Google Scholar]
  8. Zhou, T., Yang, Z., & Li, F. (2023). “Multi-agent systems for EV charging management.” Energy Reports, 9, 144-153. DOI: 10.1016/j.egyr.2023.01.089. [Google Scholar]
  9. Yang, H., & Zhao, L. (2023). “Deep reinforcement learning for coordinating EV charging and renewable energy.” IEEE Transactions on Industrial Informatics, 19(5), 3129-3138. DOI: 10.1109/TII.2022.3210783. [Google Scholar]
  10. Kumar, R., Yadav, N., & Sharma, P. (2024). “AI-enhanced energy management system for EV charging stations.” Renewable and Sustainable Energy Reviews, 178, 123914. DOI: 10.1016/j.rser.2023.123914. [Google Scholar]
  11. Patel, K., & Joshi, M. (2024). “Hybrid reinforcement learning and fuzzy logic for real-time EV charging management.” IEEE Transactions on Power Systems, 39(1), 177-187. DOI: 10.1109/TPWRS.2023.3120456. [Google Scholar]
  12. Singh, R., & Kaur, J. (2024). “Cloud-based EMS for EV charging stations using machine learning.” IEEE Access, 12, 20244-20255. DOI: 10.1109/ACCESS.2024.3020139. [Google Scholar]
  13. Annalakshmi, T., Ramesh, S, “Performance and analysis of UWB aesthetic pattern textile antenna for WBAN applications”, Applied Computational Electromagnetics Society Journal, 35(12), pp. 1525-1531, 2021 [CrossRef] [Google Scholar]
  14. Sujith, A.V.L.N.,Swathi, R. Venkatasubramanian, R., Muhibbullah, M.,Osman, S.M., “Integrating Nanomaterial and High-Performance Fuzzy-Based Machine Learning Approach for Green Energy Conversion”, Journal of Nanomaterials,pp- 5793978,2022 [Google Scholar]
  15. Sudhamsu G.; Agarwal A.; Dhivrani R.; Bhanu K.S.; Jeyalaxmi M.; Nawadkar A.R.,(2023), “Streamlining Information Capture and Retrieval with AI-Enabled Systems”,2023 3rd International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON 2023,Vol.,no.,pp.-.doi:10.1109/SMARTGENCON60755.2023.10442560 [Google Scholar]
  16. Bhambu P.; Kumar R.; Sharmila P.; Patil V.D.; Khurana S.; Vivek V.,(2023), “Exploring Reinforcement Learning in Large-Scale Data Processing”,2023 3rd International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON [Google Scholar]
  17. Acharjya K.; Yuvaraj S.; Jadhav V.D.; Sidhu A.; Sinha D.K.; Kaneria O.,(2023), “Investigating and Implementing the Efficiency of Image Restoration Techniques in Digital Image Processing”,2023 3rd International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON 2023,Vol.,no.,pp.-.doi:10.1109/SMARTGENCON60755.2023.10442169. [Google Scholar]
  18. Pragathi, B., and P. Ramu. “Authentication Technique for Safeguarding Privacy in Smart Grid Settings.” E3S Web of Conferences. Vol. 540. EDP Sciences, 2024. [Google Scholar]
  19. Pragathi, Bellamkonda, Deepak Kumar Nayak, and Ramesh Chandra Poonia. “Lorentzian adaptive filter for controlling shunt compensator to mitigate power quality problems of solar PV interconnected with grid.” International Journal of Intelligent Information and Database Systems 13.2-4 (2020): 491-506. [CrossRef] [Google Scholar]
  20. Pragathi, Bellamkonda, et al. “Evaluation and analysis of soft computing techniques for grid connected photo voltaic system to enhance power quality issues.” Journal of Electrical Engineering & Technology 16 (2021): 1833-1840. [CrossRef] [Google Scholar]
  21. J. V. Suman and J. Beatrice Seventline, Separation of HFM and NLFM signals for radar using fractional fourier transform, in Proceedings of the 2014 International Conference on Communication and Network Technologies (ICCNT 2014), Sivakasi, India, December 18-19 (2014) [Google Scholar]
  22. K. R. Prasad, S. V. Madhavi, A. V. Satyanarayana, M. Mallam, J. S. Prasad, J. V. Suman, Design and Management of an Integrated Solar-Wind Conversion System Using DFIG, in Proceedings of the 2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE 2024), Shivamogga, India, May 16-17 (2024). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.