Open Access
Issue
E3S Web Conf.
Volume 596, 2024
International Conference on Civil, Materials, and Environment for Sustainability (ICCMES 2024)
Article Number 01001
Number of page(s) 6
Section Civil, Materials and Environment for Sustainability ICCMES 2024
DOI https://doi.org/10.1051/e3sconf/202459601001
Published online 22 November 2024
  1. Kumar, R., Srivastava, A., & Lakhani, R. (2021). Industrial wastes-cum-Strength enhancing additives incorporated lightweight aggregate concrete (LWAC) for energy efficient building: A comprehensive review. Sustainability, 14(1), 331. https://doi.org/10.3390/su14010331 [CrossRef] [Google Scholar]
  2. Kumar, R., Lakhani, R., & Kumar, A. (2021). Physico-mechanical and thermal properties of lightweight structural concrete with light expanded clay aggregate for energy-efficient buildings. Lecture Notes in Civil Engineering, 175–185. https://doi.org/10.1007/978-981-16-6557-8_14 [Google Scholar]
  3. Kumar, R. and Lakhani, R. (2021). Development of lightweightaggregateconcretewith optimum thermal transmittance for opaque wallassembly in composite climates. Abstracts of International Conferences and Meetings, DOI: https://doi.org/10.5281/zenodo.5051936 [Google Scholar]
  4. Kumar, R., & Srivastava, A. (2022). Influence of lightweight aggregates and supplementary cementitious materials on the properties of lightweight aggregate concretes. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(2), 663–689. https://doi.org/10.1007/s40996-022-00935-5 [Google Scholar]
  5. Kumar, R. (2021). Effects of high volume dolomite sludge on the properties of eco-efficient lightweight concrete: Microstructure, statistical modeling, multi- attribute optimization through derringer’s desirability function, and life cycle assessment. Journal of Cleaner Production, 307, 127107. https://doi.org/10.1016/j.jclepro.2021.127107 [CrossRef] [Google Scholar]
  6. Kumar, R. (2020). Modified mix design and statistical modelling of lightweight concrete with high volume micro fines waste additive via the box- behnken design approach. Cement and Concrete Composites, 113, 103706. https://doi.org/10.1016/j.cemconcomp.2020.103706 [CrossRef] [Google Scholar]
  7. Mukherjee, S., Kumar, R., Sofi, A., & Behera, M. (2024). Rheological and mechanical properties of different types of lightweight aggregate concrete. Industry 4.0 with Modern Technology, 248-253. https://doi.org/10.1201/9781003450924-46 [Google Scholar]
  8. Peng, F., Chen, C., Jiu, S., Song, Q., & Chen, Y. (2024). Preparation and characterization of novel sulfoaluminate-cement-based Nonautoclaved aerated concrete. Materials, 17(4), 836. https://doi.org/10.3390/ma17040836 [CrossRef] [PubMed] [Google Scholar]
  9. Bukhari, S. A., Patil, D., Gogate, N., & Minde, P. R. (2023). Utilization of waste materials in non- autoclaved aerated concrete blocks: State of art review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.334 [Google Scholar]
  10. Abhilasha, Kumar, R., Lakhani, R., Mishra, R. K., & Khan, S. (2023). Utilization of solid waste in the production of Autoclaved aerated concrete and their effects on its physio-mechanical and Microstructural properties: Alternative sources, characterization, and performance insights. International Journal of Concrete Structures and Materials, 17(1). https://doi.org/10.1186/s40069-022-00569-x [CrossRef] [Google Scholar]
  11. Ramamurthy, K., & Narayanan, N. (2000). Factors influencing the density and compressive strength of aerated concrete. Magazine of Concrete Research, 52(3), 163–168. https://doi.org/10.1680/macr.2000.52.3.163 [CrossRef] [Google Scholar]
  12. Kumar, R. (2022). Influence on hydration and Microstructural properties of low-carbon cementitious binder modified with water-soluble polymer and fly ash. Lecture Notes in Civil Engineering, 1-12. https://doi.org/10.1007/978-981-19-3371-4_1 [Google Scholar]
  13. Verma, P., Kumar, R., Mukherjee, S., & Sharma, M. (2024). Sustainable self-compacting concrete with marble slurry and fly ash: Statistical modeling, microstructural investigations, and rheological characterization. Journal of Building Engineering, 94, 109785. https://doi.org/10.1016/j.jobe.2024.109785 [CrossRef] [Google Scholar]
  14. Ma, X., Li, H., Wang, D., Li, C., & Wei, Y. (2022). Simulation and experimental substantiation of the thermal properties of non-autoclaved aerated concrete with recycled concrete powder. Materials, 15(23), 8341. https://doi.org/10.3390/ma15238341 [CrossRef] [PubMed] [Google Scholar]
  15. Ulykbanov, A., Sharafutdinov, E., Chung, C., Zhang, D., & Shon, C. (2019). Performance-based model to predict thermal conductivity of non- autoclaved aerated concrete through linearization approach. Construction and Building Materials, 196, 555–563. https://doi.org/10.1016/j.conbuildmat.2018.11.147 [CrossRef] [Google Scholar]
  16. Shcherban’, E. M., Stel’makh, S. A., Beskopylny, A., Mailyan, L. R., Meskhi, B., Shuyskiy, A., Beskopylny, N., & Dotsenko, N. (2022). Mathematical modeling and experimental substantiation of the gas release process in the production of non-autoclaved aerated concrete. Materials, 15(7), 2642. https://doi.org/10.3390/ma15072642 [CrossRef] [PubMed] [Google Scholar]
  17. Shon, C., Mukangali, I., Zhang, D., Ulykbanov, A., & Kim, J. (2021). Evaluation of non-autoclaved aerated concrete for energy behaviors of a residential house in Nur-Sultan, Kazakhstan. Buildings, 11(12), 610. https://doi.org/10.3390/buildings11120610 [CrossRef] [Google Scholar]
  18. Narayanan, N., & Ramamurthy, K. (2000). Microstructural investigations on aerated concrete. Cement and Concrete Research, 30(3), 457–464. https://doi.org/10.1016/s0008-8846(00)00199-x [CrossRef] [Google Scholar]
  19. https://law.resource.org/pub/in/bis/S03/is.2185.3.1984.pdf (accessed on 10.09.2024) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.