Open Access
Issue
E3S Web Conf.
Volume 596, 2024
International Conference on Civil, Materials, and Environment for Sustainability (ICCMES 2024)
Article Number 01002
Number of page(s) 7
Section Civil, Materials and Environment for Sustainability ICCMES 2024
DOI https://doi.org/10.1051/e3sconf/202459601002
Published online 22 November 2024
  1. Chandan Kumar, D., Vasanthi, P., & Devaraju, A. (2022). Utilization of Composite Materials in Manufacturing of Paver Blocks. In Recent Advances in Materials and Modern Manufacturing: Select Proceedings of ICAMMM 2021 (pp. 407–416). Singapore: Springer Nature Singapore. [Google Scholar]
  2. Mohamad, H. M., Bolong, N., Saad, I., Gungat, L., Tioon, J., Pileh, R., & Delton, M. (2022). Manufacture of concrete paver block using waste materials and by-products: a review. GEOMATE Journal, 22(93), 9–19. [Google Scholar]
  3. Omidi, M. (2021). Development of a New and Innovative Concrete Paver (Master’s thesis, University of Waterloo). [Google Scholar]
  4. Mohamad, H. M., Bolong, N., Saad, I., Gungat, L., Tioon, J., Pileh, R., & Delton, M. (2022). Manufacture of concrete paver block using waste materials and by-products: a review. GEOMATE Journal, 22(93), 9–19. [Google Scholar]
  5. Anurag, Kumar, R., & Goyal, S. (2023). Recycling of calcined low-grade limestone slurry in producing low carbon cementitious binder towards sustainable environment: ANOVA, statistical modeling & microstructural performance. Environmental Development, 47, 100910. https://doi.org/10.1016/j.envdev.2023.100910 [CrossRef] [Google Scholar]
  6. Nighot, N. S., & Kumar, R. (2023). A comprehensive study on the synthesis and characterization of eco-cementitious binders using different kind of industrial wastes for sustainable development. Developments in the Built Environment, 14, 100135. https://doi.org/10.1016/j.dibe.2023.100135 [CrossRef] [Google Scholar]
  7. Sharma, C. S., & Kumar, R. (2022). Influence of dry lime sludge on the physico-mechanical and Microstructural properties of low carbon cementitious composites exposed at elevated temperature. Lecture Notes in Civil Engineering, 333–346. https://doi.org/10.1007/978-981-19-3371-4_30 [Google Scholar]
  8. Anurag, & Kumar, R. (2022). Optimization of clinker factor for low-carbon Penta-blended cement mortar via box–behnken design of response surface methodology. Lecture Notes in Civil Engineering, 577–596. https://doi.org/10.1007/978-981-19-4040-8_47 [Google Scholar]
  9. Bhandari, I., & Kumar, R. (2023). Limestone-calcined clay-silica fume blended cement: Statistical modelling and multi-attribute optimization through derringer’s desirability function. Materials Today: Proceedings, 82, 14–21. https://doi.org/10.1016/j.matpr.2022.10.130 [CrossRef] [Google Scholar]
  10. Srivastava, A., Kumar, R., & Lakhani, R.(2021). Low energy/Low carbon eco-cementitious binders as an alternative to ordinary Portland cement. Handbook of Smart Materials, Technologies, and Devices, 1–23. https://doi.org/10.1007/978-3-030-58675-1_143-1 [Google Scholar]
  11. Sharma, C. S., & Kumar, R. (2024). Use of low-grade limestone slurry to develop Sustainable low carbon Portland Limestone cementitious material. ISBN: 978-93-5764-275-0, p 76–84. BFC Publications, UP. https://books.google.co.in/books?hl=hi&lr=&id=zLPuEAAAQBAJ&oi=fnd&pg=PA76&ots=OtLlZr6OX&sig=1Jt5RDsOnBUZTLfgHfbbVCz5DWY#v=onepage&q&f=false [Google Scholar]
  12. Saraswat, P., & Singh, B. (2024). Utilization of recycled concrete aggregates in LDPE-bonded cementless paver blocks. Construction and Building Materials, 419, 135467. https://doi.org/10.1016/j.conbuildmat.2024.135467 [CrossRef] [Google Scholar]
  13. Chand, M., Aggarwa, V., & Shukla, G.(2020). Freeze-thaw durability of M30 paver blocks replacing opc by fly ash and adding PPF. Advances in Mathematics: Scientific Journal, 9(6), 3341–3348. https://doi.org/10.37418/amsj.9.6.14 [CrossRef] [Google Scholar]
  14. Kumar, R. (2022). Recent progress in newer cementitious binders as an alternative to Portland cement: Need for the 21st century. Lecture Notes in Civil Engineering, 797–812. https://doi.org/10.1007/978-981-19-4040-8_63 [Google Scholar]
  15. Ghorbani, S., Gholizadeh, M., & De Brito, J.(2018). Effect of magnetized water on the mechanical and durability properties of concrete block pavers. Materials, 11(9), 1647. https://doi.org/10.3390/ma11091647 [CrossRef] [PubMed] [Google Scholar]
  16. Ingole, A. R., Sonole, N. N., & Thakur, C. R.(2019). Utilisation of E-waste, fly ash in manufacturing of paver blocks and tiles. International Journal of Innovative Technology and Exploring Engineering, 8(10), 2392–2396. https://doi.org/10.35940/ijitee.g5996.0881019 [CrossRef] [Google Scholar]
  17. Agrawal, R., Singh, S. K., Singh, S., Prajapat, D. K., Sudhanshu, S., Kumar, S., Đurin, B., Šrajbek, M., & Gilja, G. (2023). Utilization of plastic waste in road paver blocks as a construction material. CivilEng, 4(4), 1071–1082. https://doi.org/10.3390/civileng4040058 [CrossRef] [Google Scholar]
  18. Kundu, S. P., Chakraborty, S., & Chakraborty, S. (2018). Effectiveness of the surface modified jute fibre as fibre reinforcement in controlling the physical and mechanical properties of concrete paver blocks. Construction and Building Materials, 191, 554–563. https://doi.org/10.1016/j.conbuildmat.2018.10.045 [CrossRef] [Google Scholar]
  19. Bhandari, I., & Kumar, R. (2023). Effect of silica fume and PCE-HPMC on LC3 mortar: Microstructure, statistical optimization and life cycle Assessment. Construction and Building Materials, 403, 133073. [CrossRef] [Google Scholar]
  20. Mañosa, J., Calderón, A., Salgado-Pizarro, R., Maldonado-Alameda, A., & Chimenos, J. M.(2024). Research evolution of limestone calcined clay cement (LC3), a promising low-carbon binder–A comprehensive overview. Heliyon. [Google Scholar]
  21. Bhandari, I., & Kumar, R. (2023). Effect of silica fume and PCE-HPMC on LC3 mortar: Microstructure, statistical optimization and life cycle assessment. Construction and Building Materials, 403, 133073. https://doi.org/10.1016/j.conbuildmat.2023.133073 [CrossRef] [Google Scholar]
  22. LC3 – Limestone Calcined Clay Cement. https://lc3.ch/the-material/ (accessed on 12.09.2024) [Google Scholar]
  23. Anurag, Kumar, R., Goyal, S., & Srivastava, A. (2021). A comprehensive study on the influence of supplementary cementitious materials on physico-mechanical, microstructural and durability properties of low carbon cement composites. Powder Technology, 394, 645–668. https://doi.org/10.1016/j.powtec.2021.08.081 [CrossRef] [Google Scholar]
  24. Sharma, C. S., & Kumar, R. (2024). Use of low-grade limestone slurry to develop Sustainable low carbon Portland Limestone cementitious material. ISBN: 978-93-5764-275-0, p 76–84. BFC Publications, UP. https://books.google.co.in/books?hl=hi&lr=&id=zLPuEAAAQBAJ&oi=fnd&pg=PA76&ots=OtLlZr6OX&sig=1Jt5RDsOnBUZTLfgHfbbVCz5DWY#v=onepage&q&f=fals [Google Scholar]
  25. Andrew, R. M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10(1), 195–217. [CrossRef] [Google Scholar]
  26. IS 15658. (2021). Precast concrete blocks for paving–specification [Google Scholar]
  27. Nguyen, Q. D., Khan, M. S. H., & Castel, A.(2018). Engineering properties of limestone calcined clay concrete. Journal of Advanced Concrete Technology, 16(8), 343–357 [CrossRef] [Google Scholar]
  28. Wang, L., Ur Rehman, N., Curosu, I., Zhu, Z., Beigh, M. A., Liebscher, M., Chen, L., Tsang, D. C., Hempel, S., & Mechtcherine, V.(2021). On the use of limestone calcined clay cement (LC3) in high-strength strain-hardening cement-based composites (HS-SHCC). Cement and Concrete Research, 144, 106421. https://doi.org/10.1016/j.cemconres.2021.106421 [CrossRef] [Google Scholar]
  29. Ijaz, N., Ye, W., Rehman, Z. U., Ijaz, Z., & Junaid, M. F. (2024). Global insights into micro-macro mechanisms and environmental implications of limestone calcined clay cement (LC3) for sustainable construction applications. Science of The Total Environment, 907, 167794. https://doi.org/10.1016/j.scitotenv.2023.167794 [CrossRef] [Google Scholar]
  30. Gettu, R., Patel, A., Rathi, V., Prakasan, S., Basavaraj, A. S., Palaniappan, S., & Maity, S.(2019). Influence of supplementary cementitious materials on the sustainability parameters of cements and concretes in the Indian context. Materials and Structures, 52, 1–11. [CrossRef] [Google Scholar]
  31. IS 18189. (2023). For limestone calcined clay cement (LC3) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.