Open Access
Issue
E3S Web Conf.
Volume 596, 2024
International Conference on Civil, Materials, and Environment for Sustainability (ICCMES 2024)
Article Number 01034
Number of page(s) 7
Section Civil, Materials and Environment for Sustainability ICCMES 2024
DOI https://doi.org/10.1051/e3sconf/202459601034
Published online 22 November 2024
  1. A. Kamble and I. Gupta, “Architecture and Daylight : Planning Strategies for Energy – Efficient Buildings in India,” vol. 12, no. 6, pp. 1964–1968, 2023, doi: 10.21275/SR23617120753. [Google Scholar]
  2. S. G. Colaco, C. P. Kurian, V. I. George, and A. M. Colaco, “Prospective techniques of effective daylight harvesting in commercial buildings by employing window glazing, dynamic shading devices and dimming control—a literature review,” Build. Simul., vol. 1, no. 4, pp. 279–289, 2008, doi: 10.1007/s12273-008-8126-8. [CrossRef] [Google Scholar]
  3. G. Jangali Satish and N. Nagesha, “Energy Consumption Pattern and Environmental Impact: A Case Study of Residential Sector in India,” IOP Conf. Ser. Mater. Sci. Eng., vol. 577, no. 1, 2019, doi: 10.1088/1757-899X/577/1/012035. [CrossRef] [Google Scholar]
  4. M. Mardookhy, R. Sawhney, S. Ji, X. Zhu, and W. Zhou, “A study of energy efficiency in residential buildings in Knoxville, Tennessee,” J. Clean. Prod., vol. 85, pp. 241–249, 2014, doi: 10.1016/j.jclepro.2013.09.025. [CrossRef] [Google Scholar]
  5. A. Htet, S. R. Liana, S. Y. Rani, and A. Bhaumik, “The Effectiveness of Daylight Management in Building: A Review,” AIP Conf. Proc., vol. 2854, no. 1, 2023, doi: 10.1063/5.0162625. [Google Scholar]
  6. TERI, “Thermal comfort prescription for cooling dominated Indian residential buildings,” p. 71, 2021. [Google Scholar]
  7. A. Das and S. K. Paul, “Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions,” Appl. Energy, vol. 158, pp. 65–85, 2015, doi: 10.1016/j.apenergy.2015.08.006. [CrossRef] [Google Scholar]
  8. S. Bantanur and S. P. Bharathish, “Day Lighting Analysis in Vernacular Houses of Rural Karnataka, India,” J. Arch. Plan. Constr. Manag., vol. 6, no. 2, pp. 1–11, 2016. [Google Scholar]
  9. T. J. Dabe and A. R. Dongre, “Analysis of performance of the daylight into critical liveable area of ‘type design’ dwelling unit on the basis of daylight metrics for hot and dry climate,” Indoor Built Environ., vol. 27, no. 1, pp. 129–142, 2018, doi: 10.1177/1420326X16669844. [CrossRef] [Google Scholar]
  10. R. Bardhan and R. Debnath, “Towards daylight inclusive bye-law: Daylight as an energy saving route for affordable housing in India,” Energy Sustain. Dev., vol. 34, no. 2016, pp. 1–9, 2016, doi: 10.1016/j.esd.2016.06.005. [CrossRef] [Google Scholar]
  11. M. K. Kumar and N. Kranthi, “Impact of Setbacks on Interior Daylighting in Residential Buildings: A Case Study of Vijayawada, India,” Indian J. Sci. Technol., vol. 10, no. 42, pp. 1–10, 2017, doi: 10.17485/ijst/2017/v10i42/111587. [CrossRef] [Google Scholar]
  12. A. Gupta, “Building a Green Home Using Local Resources and Sustainable Technology in Jammu Region – A Case Study,” Energy Procedia, vol. 115, pp. 59–69, 2017, doi: 10.1016/j.egypro.2017.05.007. [CrossRef] [Google Scholar]
  13. R. Chadalavada, K; N, Viswatej; Srikonda, “Analyzing Vernacular Sustainable Design Principles- A Case Study of a,” vol. 89, pp. 5010–5017, 2017. [Google Scholar]
  14. T. J. Dabe and V. S. Adane, “The impact of building profiles on the performance of daylight and indoor temperatures in low-rise residential building for the hot and dry climatic zones,” Build. Environ., vol. 140, no. February, pp. 173–183, 2018, doi: 10.1016/j.buildenv.2018.05.038. [CrossRef] [Google Scholar]
  15. R. J. Nair, E. Brembilla, C. Hopfe, and J. Mardaljevic, “Influence of climate on the daylight and thermal performance of buildings in Kerala (India),” 2018, [Online]. Available: /articles/conference_contribution/Influence_of_climate_on_the_daylight_and_thermal_performance_of_buildings_in_Kerala_India_/942836 3/1 [Google Scholar]
  16. P. Patki and N. Patki, “Relation of Daylight with Space Configuration in Residence in Pune,” Int. J. Eng. Res., vol. 7, no. special2, p. 198, 2018, doi: 10.5958/2319-6890.2018.00057.0. [CrossRef] [Google Scholar]
  17. M. Kranti Kumar and N. Kranthi, “Factors affecting the day lighting performance in the residences,” Int. J. Recent Technol. Eng., vol. 7, no. 6, pp. 760–766, 2019. [Google Scholar]
  18. L. A. Verma and F. Bano, “Methodology for Effective Daylighting in Courtyard Houses of Composite Climate,” Int. J. Innov. Technol. Explor. Eng., vol. 10, no. 5, pp. 103–116, 2021, doi: 10.35940/ijitee.e8687.0310521. [CrossRef] [Google Scholar]
  19. A. M. Chaudhary, S. Priyadarshi, and S. Goswami, “A simulation study to analyze the impact of Integrated Passive Strategy on air- ventilation and daylighting in a slum house in Mumbai,” Build. Simul. Conf. Proc., pp. 2852–2859, 2022, doi: 10.26868/25222708.2021.30990. [Google Scholar]
  20. R. Shanthi Priya and K. Kalaimathy, “Evaluating daylighting effectiveness of a traditional house in tropical climate,” Mater. Today Proc., vol. 68, pp. 2622–2630, 2022, doi: 10.1016/j.matpr.2022.09.565. [CrossRef] [Google Scholar]
  21. M. Singal, “Interiority of Agraharam: Traditional Houses in Temple Towns of India,” Interiority, vol. 5, no. 1, pp. 75–96, 2022, doi: 10.7454/in.v5i1.190. [CrossRef] [Google Scholar]
  22. J. Luthra and A. M. Sundaram, “Adaptive External Shading System for Better Daylight Balancing With Heat Gain for the Composite Climate of Delhi Ncr,” ZEMCH Int. Conf., no. October, pp. 679–688, 2022. [Google Scholar]
  23. K. Kalaimathy, R. Shanthi Priya, P. Rajagopal, C. Pradeepa, and R. Senthil, “Daylight performance analysis of a residential building in a tropical climate,” Energy Nexus, vol. 11, no. July, p. 100226, 2023, doi: 10.1016/j.nexus.2023.100226. [CrossRef] [Google Scholar]
  24. K. Chadalavada, “THERMAL COMFORT AND DAYLIGHT ASSESSMENT OF TRADITIONAL HOUSE IN AMARAVATHI, ANDHRA PRADESH THERMAL COMFORT AND DAYLIGHT ASSESSMENT OF,” no. July, 2024. [Google Scholar]
  25. R. Gupta and M. Joshi, “Courtyard: A look at the relevance of courtyard space in contemporary houses,” Civ. Eng. Archit., vol. 9, no. 7, pp. 2261–2272, 2021, doi: 10.13189/cea.2021.090713. [CrossRef] [Google Scholar]
  26. S. Sthapak and A. Bandyopadhyay, “Courtyard houses: An overview,” Recent Res. Sci. Technol., vol. 6, no. 1, pp. 70–73, 2014. [Google Scholar]
  27. G. Gangwar and P. Kaur, “User’s perception of the relevance of courtyard designs in a modern context: A case of traditional pol houses, Ahmedabad,” Civ. Eng. Archit., vol. 8, no. 3, pp. 379–389, 2020, doi: 10.13189/cea.2020.080323. [CrossRef] [Google Scholar]
  28. P. Kaur and A. Gaurav Gangwar, “Towards Sustainable Future: Typologies and Parameters of Courtyard Design,” J. Civ. Eng. Environ. Technol., vol. 3, no. 5, pp. 386–391, 2016, [Online]. Available: http://www.krishisanskriti.org/Publication.html [Google Scholar]
  29. K. Kalaimathy, R. Shanthi Priya, P. Rajagopal, C. Pradeepa, and R. Senthil, “Daylight performance analysis of a residential building in a tropical climate,” Energy Nexus, vol. 11, no. October 2022, p. 100226, 2023, doi: 10.1016/j.nexus.2023.100226. [CrossRef] [Google Scholar]
  30. R. Debnath and R. Bardhan, “Daylight Performance of a Naturally Ventilated Building as Parameter for Energy Management,” Energy Procedia, vol. 90, no. December 2015, pp. 382–394, 2016, doi: 10.1016/j.egypro.2016.11.205. [CrossRef] [Google Scholar]
  31. M. Canazei et al., “Room- and illumination- related effects of an artificial skylight,” Light. Res. Technol., vol. 48, no. 5, pp. 539–558, 2016, doi: 10.1177/1477153515577852. [CrossRef] [Google Scholar]
  32. A. Chel, G. N. Tiwari, and A. Chandra, “A model for estimation of daylight factor for skylight: An experimental validation using pyramid shape skylight over vault roof mud- house in New Delhi (India),” Appl. Energy, vol. 86, no. 11, pp. 2507–2519, 2009, doi: 10.1016/j.apenergy.2009.03.004. [CrossRef] [Google Scholar]
  33. C. Basurto, J. H. Kämpf, and J. L. Scartezzini, “Annual performance assessment of complex fenestration systems in sunny climates using advanced computer simulations,” J. Daylighting, vol. 2, no. 2, pp. 32–43, 2015, doi: 10.15627/jd.2015.6. [CrossRef] [Google Scholar]
  34. J. Mardaljevic et al., “Daylighting metrics for residential buildings,” Proc. 27th Sess. CIE, no. February 2017, p. 18, 2011. [Google Scholar]
  35. I. Acosta, M. Á. Campano, and J. F. Molina, “Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces,” Appl. Energy, vol. 168, no. February, pp. 493–506, 2016, doi: 10.1016/j.apenergy.2016.02.005. [CrossRef] [Google Scholar]
  36. I. Bournas, “Swedish daylight regulation throughout the 20th century and considerations regarding current assessment methods for residential spaces,” Build. Environ., vol. 191, no. January, p. 107594, 2021, doi: 10.1016/j.buildenv.2021.107594. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.