Open Access
Issue |
E3S Web Conf.
Volume 596, 2024
International Conference on Civil, Materials, and Environment for Sustainability (ICCMES 2024)
|
|
---|---|---|
Article Number | 01035 | |
Number of page(s) | 21 | |
Section | Civil, Materials and Environment for Sustainability ICCMES 2024 | |
DOI | https://doi.org/10.1051/e3sconf/202459601035 | |
Published online | 22 November 2024 |
- Kaushik KA, Dalal SJ, Panwar S. Impact of industrialization on culture of Uttarakhand and its role on career enhancement. VSRD Int J Bus Manage Res.2(4):123–132 (2012) [Google Scholar]
- Spina F. Anastasi A. Prigione V, Tigini V, Varese GC. Biological treatment of industrial wastewaters: a fungal approach. Chem Eng Trans.27:175–180 (2012) doi: 10.3303/CET1227030. [Google Scholar]
- Deepali, Joshi N. Study of groundwater quality in and around SIDCUL industrial area, Haridwar, Uttarakhand, India. J Appl Technol. Environ Sanitation. 2(2):129–134 (2012) [Google Scholar]
- Kansal A, Siddiqui NA, Gautam A. Assessment of heavy metals and their interrelationships with some physicochemical parameters in ecoefficient rivers of Himalayan Region. Int J Environ Sci.2(2):440–450 (2011). doi: 10.1007/s10661-012-2730-x. [Google Scholar]
- Lokhande RS, Singare PU, Pimple DS. Toxicity Study of heavy metals pollutants in wastewater effluents samples collected from Taloja Industrial Estate of Mumbai, India. Resour. Environ. 1(1):13–19 (2011). doi: 10.5923/j.re.20110101.02. [Google Scholar]
- Modak DP, Singh KP, Ahmed S, Ray PK. Trace metal ion in Ganga water system. Chemosphere. 21(1–2):275–287(1990). [CrossRef] [Google Scholar]
- Rajaram T, Das A. Water pollution by industrial effluents in India: discharge scenarios and case for participatory ecosystem specific local regulation. Futures.40(1):56–69(2008).doi: 10.1016/j.futures.2007.06.002. [CrossRef] [Google Scholar]
- Khan S, Muhammad A, Noor M. Investigation of pollutants in wastewater of Hayatabad Industrial Estate Peshawar. Pak J Agri Sci.2:457–461 (2002) doi:10.3923/jas.2002.457.461. [Google Scholar]
- Garcia A, Rivas HM, Figueroa JL, Monroe AL. Case history: pharmaceutical wastewater treatment plant upgrade, Smith Kline Beecham Pharmaceuticals Company. Desalination.102(1–3):255–263(1995) [CrossRef] [Google Scholar]
- Jitesh Lalwani, Ashutosh Gupta, Shashidhar Thatikonda, Challapalli Subrahmanyam. An industrial insight on treatment strategies of the pharmaceutical industry effluent with varying qualitative characteristics. Journal of Environmental Chemical Engineering. 8(5), 104190(2020)https://doi.org/10.1016/j.jece.2020.104190. [CrossRef] [Google Scholar]
- Chen XP, Mi Zh K. Physical-Chemical Treatment of Pharmaceutical Wastewater Technology and Progress. Anhui Medical and Pharmaceutical Journal. 13(10): 1279–1281(2009).doi 10.2991/ap3er15.2015.81. [Google Scholar]
- DGCIS, Ministry of Commerce and Industry, India, Annual report 2022–2023. [Google Scholar]
- Loffler D, TA Ternes. Determination of acidic pharmaceuticals, antibiotics and ivermectin in river sediment using liquid chromatography-tandem mass spectrometry, J. Chromatogr. A. 1021(1– 2): 133–144 (2003). doi: 10.1016/j.chroma.2003.08.089. [CrossRef] [Google Scholar]
- Buitron G, Rosa Maria Melgoza, Leonardo Jimenez. Pharmaceutical Wastewater Treatment Using an Anaerobic/Aerobic Sequencing Batch Biofilter. Journal of environmental science and health. Part A— Toxic/Hazardous Substances & Environmental Engineering. 38(10):2077–2088 (2003). doi: 10.1081/ese-120023334. [Google Scholar]
- Radjenovic J, Petrovic M, Barcelo D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res. 43(3):831–841 (2009).https://doi.org/10.1016/j.watres.2008.11.043. [CrossRef] [PubMed] [Google Scholar]
- H Jones OA, Voulvoulis N, Lester JN. Human Pharmaceuticals in Wastewater Treatment Processes. Crit. Rev. Environ. Sci. Technol.2005; 35(4):401–427 (2005). https://doi.org/10.1080/10643380590956966. [CrossRef] [Google Scholar]
- Wang Y, Lu J, Engelstadter J, Zhang S, Ding P, Mao L, Yuan Z, Bond PL, Guo J. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. ISME J. 2179–2196 (2020). doi: 10.1038/s41396-020-0679-2. [Google Scholar]
- WHO.2019. The 2019 WHO AWaRe Classification of Antibiotics for Evaluation and Monitoring of Use; World Health Organization: Geneva, Switzerland. https://www.who.int/medicines/news/2019/WHO_releases2019AWaRe_classification_antibiotics/en/. [Google Scholar]
- CDC.2019. Antibiotic Resistance Threats in the United States; US Department of Health and Human Services, CDC: Atlanta, GA, USA. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report508.pdf. [Google Scholar]
- CDC.2020. Antifungal Resistance. Atalanta: Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/fungal/antifungal-resistance.html#what-causes. [Google Scholar]
- NHS.2020. Antifungal Medicines; National Health System: London, UK. Available online: https://www.nhs.uk/conditions/antifungal-medicines/ (accessed on 1 November 2020). [Google Scholar]
- Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 529:336–343(2016). doi:10.1038/nature17042. [CrossRef] [PubMed] [Google Scholar]
- Ritu Gothwal, Thhatikkonda Shashidhar. Antibiotic Pollution in the Environment: A Review, Clean – Soil, Air, Water. 43 (4): 479–489(2015). doi:10.1002/clen.201300989. [Google Scholar]
- Ritu Gothwal and Thhatikkonda Shashidhar. Mathematical model for the transport of fluoroquinolone and its resistant bacteria in aquatic environment. Environ. Sci. Pollut. Res. Int. 25(21):20439–20452(2018). doi: 10.1007/s11356-017-9848-x. [CrossRef] [PubMed] [Google Scholar]
- Chang, CY, JS Chang, V Saravanamuthu, J Kandasamy. Pharmaceutical wastewater treatment by membrane bioreactor process—a case study in southern Taiwan. Desalination.234:393–401(2008). doi:10.1016/J.DESAL.2007.09.109. [CrossRef] [Google Scholar]
- Dolar D, Kosutic K, Ignjatic Zokic T, Sipos L, Markic M, Zupan M. Combined methods of highly polluted pharmaceutical wastewater treatment—a case study of high recovery. Polish Journal of Environmental Studies. 22(6):1677–1683(2012). [Google Scholar]
- Vijayan DS, Mohan A, Nivetha C, Siva Kumar V, Devarajan P, A Paulmakesh, Aravinda, S. Treatment of Pharma Effluent using Anaerobic Packed Bed Reactor. Journal of Environmental and Public Health. Article ID 4657628 (2022). https://doi.org/10.1155/2023/9792879. [Google Scholar]
- Kanama KM, Daso AP, Mpenyana Monyatsi L, Coetzee MAA. Assessment of pharmaceuticals, personal care products, and hormones in wastewater treatment plants receiving inflows from health facilities in North-West Province, South Africa, J. Toxicol. 1–16 (2018) doi: 10.1155/2018/3751930. [Google Scholar]
- Carson R.2002. Silent Spring – 40th Anniversary Edition. Boston: Mariner. [Google Scholar]
- Czech B, Rubinowska K. TiO2- assisted photocatalytic degradation of diclofenac, metoprolol, estrone and chloramphenicol as endocrine disruptors in water. Adsorption.19,619–630(2013). doi:10.1007/s10450-013-9485-8. [CrossRef] [Google Scholar]
- Ebele A J, Abou-Elwafa Abdallah M, Harrad S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants. 3 (1), 1–16 (2017). [Google Scholar]
- Metcalfe C, Miao X S, Hua W, Letcher R, Servos M. Pharmaceuticals in the Canadian environment. In Pharmaceuticals in the Environment.2004; 67–90. doi: 10.1007/978-3-662-09259-0_6. [Google Scholar]
- Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International. 35(2),402–417(2009). doi:10.1016/j.envint.2008.07.009. [CrossRef] [PubMed] [Google Scholar]
- Bredhult C, Backlin BM, Olovsson M. Effects of some endocrine disruptors on the proliferation and viability of human endometrial endothelial cells in vitro. Reproductive Toxicology.23(4), 550–559(2007).doi:10.1016/j.reprotox.2007.03.006 [Google Scholar]
- Haguenoer JM. Do pharmaceutical waste and drug residue pose a risk to public health? Sante publique. 22(3), 325–342 (2010).https://doi.org/10.3917/spub.103.0325. [Google Scholar]
- Leckie, H. 2019. OECD Stud Water. OECD. [Google Scholar]
- Pal A, Gin KYH, Lin AYC, Reinhard M. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment. 408(24),6062–6069(2010). doi:10.1016/j.scitotenv.2010.09.026. [CrossRef] [Google Scholar]
- John Busayo Adeoye, Yie Hua Tan, Sie Yon Lau, Yee Yong Tan, Tung Chiong, Nabisab Mujawar Mubarak and Mohammad Khalid. Advanced oxidation and biological integrated processes for pharmaceutical wastewater treatment: A review. Journal of Environmental Management.353, 120170(2024). doi: 10.1016/j.jenvman.2024.120170. [Google Scholar]
- Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic.8(1),1–13(2008). doi: 10.1016/j.ecolind.2007.06.002. [CrossRef] [Google Scholar]
- Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. 15(7).1916(2023). https://doi.org/10.3390/pharmaceutics15071916. [PubMed] [Google Scholar]
- Pouzola T, Levi Y, Bertrand-Krajewski JL. Modelling daily and hourly loads of pharmaceuticals in urban wastewater. Int. J. Hyg. Environ. Health. 229.113552(202). doi: 10.1016/j.ijheh.2020.113552. [Google Scholar]
- Xu WH, Zhang G, Zou SC, Li XD, Liu YC. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environ. Pollut.145(3).672–679(2007).doi: 10.1016/j.envpol.2006.05.038. [CrossRef] [Google Scholar]
- Mompelat S, LeBot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 35(5). 803–814(2009).doi:10.1016/j.envint.2008.10.008. [CrossRef] [Google Scholar]
- Gurr CJ, Reinhart M. Harnessing Natural Attenuation of Pharmaceuticals and Hormones in Rivers. Environmental Science and Technology. 40(9): 2872–2876 (2006).doi.org/10.1021/es062677d. [CrossRef] [PubMed] [Google Scholar]
- Li WC. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environmental Pollution. 187. 193–201(2014). doi10.1016/j.envpol.2014.01.015. [CrossRef] [Google Scholar]
- OECD. 2019. Pharmaceutical Residues in Freshwater: Hazards and Policy Responses, OECD Studies on Water, OECD Publishing, Paris, https://doi.org/10.1787/c936f42d-en. [Google Scholar]
- Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matrices–a review. Journal of Environmental Management. 92(10).304–347(2011).doi: 10.1016/j.jenvman.2011.0 5.023. [Google Scholar]
- Vivek kumar, Madan Sonkar, Pooja Yadav, Sudheer Kumar Shukla. Recent advancement on bioaugmentation strategies for process industry wastewater (PIWW) treatment. Water Remediation, Energy, Environment, and Sustainability. 11(2018).doi:10.1007/978-981-10-7551-3_11.189–209. [Google Scholar]
- Vinod Kumar, Jogendra Singh, Ashu Saini, Pankaj Kumar. Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environ. Sustain. 2:55–65(2019). https://doi.org/10.1007/s42398-019–00050–8. [CrossRef] [Google Scholar]
- Dixit D, Parmar N. Treatment of pharmaceutical wastewater by electro- coagulation and natural coagulation process: Review. VSRD Int. J. Technol. Non-Technol. Res.2013; 4(5):79–88. [Google Scholar]
- Chia-Yuan Chang, Jing-Song Chang, Saravanamuth Vigneswaran, Jaya Kandasamy. Pharmaceutical wastewater treatment by membrane bioreactor process—a case study in southern Taiwan. Desalination. 234(1).393–401(2008). doi: 10.1016/j.desal.2007.09.109. [CrossRef] [Google Scholar]
- Ananya Shah and Manan Shah. Characterization and bioremediation of wastewater: A review exploring bioremediation as a sustainable technique for pharmaceutical wastewater. Groundwater for Sustainable Development.11(33).100383(2020). doi:10.1016/j.gsd.2020.100383. [CrossRef] [Google Scholar]
- Surabhi Patel, Somen Mondal, Subrata Kumar Majumder, Papita Das, Pallab Ghosh. Treatment of a Pharmaceutical Industrial Effluent by a Hybrid Process of Advanced Oxidation and Adsorption. ACS Omega. 5(50). 32305–32317(2020).doi:10.1021/acsomega.0c04139. [CrossRef] [PubMed] [Google Scholar]
- Kumari V, Tripathi AK. Characterization of pharmaceuticals industrial effluent using GC–MS and FT-IR analyses and defining its toxicity. Appl Water Sci. 9.185(2019). https://doi.org/10.1007/s13201-019-1064-z. [CrossRef] [PubMed] [Google Scholar]
- Xin Li, Guoyi Li. A Review: Pharmaceutical Wastewater Treatment Technology and Research in China. Asia-Pacific Energy Equipment Engineering Research Conference. 345–348(2015). doi: 10.2991/ap3er-15.2015.81. [Google Scholar]
- Chandrakanth Gadipelly, Antía Perez- Gonza lez, Ganapati D. Yadav, Inmaculada Ortiz, Raquel Iban ez, Virendra K. Rathod, Kumudini V Marathe. Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse. Ind. Eng. Chem. Res. 53(29). 11571–11592(2014).doi:10.1021/ie501210j. [CrossRef] [Google Scholar]
- Gome A, Upadhyay K. Biodegradability assessment of pharmaceutical wastewater treated by ozone. Int Res J Environ Sci. 2(4).21–25(2013). [Google Scholar]
- Das MP, Bashwant M, Kumar K, Das J. Control of pharmaceutical effluent parameters through bioremediation. Journal of Chemical and Pharmaceutical Research.4(2).1061–1065(2012). [Google Scholar]
- CPCB. 2020. https://cpcb.nic.in/uploads/Industry-Specific-Standards/Effluent/73pharmaceuticals.pdf. [Google Scholar]
- Bertanza G, Collivignarelli C, Pedrazzani R. The Role of Chemical Oxidation in Combined Chemical-Physical and Biological Processes: Experiences of Industrial Wastewater Treatment. Water Sci. Technol. 44(5). 109−116. MID: 11695447 (2001) [CrossRef] [PubMed] [Google Scholar]
- Suman Raj DS, Anjaneyulu Y. Evaluation of Biokinetic Parameters for Pharmaceutical Wastewaters Using Aerobic Oxidation Integrated with Chemical Treatment. Process Biochem. 40.165–175(2005). [CrossRef] [Google Scholar]
- Badawy MI, Wahaab RA, El-Kalliny AS. Fenton Biological Treatment Processes for the Removal of Some Pharmaceuticals from Industrial Wastewater. J. Hazard. Mater. 167.567−574(2009). [CrossRef] [Google Scholar]
- Hartmann A, Golet EM, Gartiser S, Alder AC, Koller T, Widmer RM. Primary DNA Damage but Not Mutagenicity Correlates with Ciprofloxacin Concentrations in German Hospital Wastewaters. Arch. Environ. Contam. Toxicol.36. 115–119(1999). [CrossRef] [PubMed] [Google Scholar]
- Srikanth Vuppala NV, Ch Suneetha, V Saritha. Study on treatment process of effluent in bulk drug industry. Int. J. Res. Pharm Biomed. Sci. 3(3).1095–1102(2012). [Google Scholar]
- Ramola B, Singh AP. Heavy metal concentrations in pharmaceutical effluents of Industrial Area of Dehradun (Uttarakhand), India. Int. J. Environ. Sci. Res.2(2).140–145(2013). doi:10.4172/2161-0525.1000173. [Google Scholar]
- UNESCO.2005. Water resources systems planning and management. [Google Scholar]
- Amin A, Naik ATR, Azhar M, Nayak H. Bioremediation of different wastewaters— a review. Cont. J. Fish. Aquat. Sci. 7(2).7–17(2013). doi:10.5707/cjfas.2013.7.1.7.17 [Google Scholar]
- Vanerkar AP, Satyanarayan S, Dharmadhikari DM. Full-scale treatment of herbal pharmaceutical industry wastewater. Int. J. Chem. Phys. Sci. 2.52–62(2013). [Google Scholar]
- Umesh Shirke, Arif Khan. Review Paper on Various Treatment Processes of Pharmaceutical Wastewater. International Journal of Innovations in Engineering and Science. 5(11).17–23(2020). doi: 10.46335/IJIES.2020.5.11.4. [CrossRef] [Google Scholar]
- Sudhir Kumar Gupta, Sunil Kumar Gupta, Yung-Tse Hung. Treatment of pharmaceutical wastes. Waste treatment in the process industries, CRC Press (Taylor and Francis Group). 167–233(2006). [Google Scholar]
- Roslan NN, Lau HLH, Suhaimi NAA, Shahri NNM, Verinda SB, Nur M, Lim JW, Usman A. Recent Advances in Advanced Oxidation Processes for Degrading Pharmaceuticals in Wastewater—A Review. Catalysts.14(3):189(2024). https://doi.org/10.3390/catal14030189. [CrossRef] [Google Scholar]
- Periyannan R, Arun Prasad J, S Arulmozhi, M Balaji, A Gopalan, NR Banu Priya, P Shanthi, G Shanmugavadivel, B Anukarthika, Nyagong Santino David Ladu. Pharmaceutical Effluent Treatment Using Multi-Effect Evaporator Process, Advances in Materials Science and Engineering. Article ID 5238033.1–6 (2022).https://doi.org/10.1155/2022/5238033. [Google Scholar]
- Swami Venkat Prasad Mylapilli, Sivamohan N Reddy. Treatment of real industrial pharmaceutical wastewater using wet peroxide oxidation, The Canadian Journal of Chemical Engineering. 99(3): 201–211(2020). doi:10.1002/cjce.23941. [Google Scholar]
- Shabana EF, Senousy HH, Khourshid EB. Pharmaceutical wastewater treatment using free and immobilized Cyanobacteria. Egyptian J. of Phycol. 20.124–153(2019).doi:10.21608/egyjs.2019.116025. [Google Scholar]
- Fawzy ME, Abdelfattah ME, Abuarab, E Mostafa, KM Aboelghait, MH El-Awady. Sustainable Approach for Pharmaceutical Wastewater Treatment and Reuse: Case Study. J. Environ. Sci. Technol.11(4).209–219(2018).doi: 10.3923/jest.2018.209.219. [CrossRef] [Google Scholar]
- Rongjun Su, Guangshan Zhang, Peng Wang, Shixiong Li, Ryan M. Ravenelle and John C. Crittenden. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor.1–5. Article ID:705275(2015).doi:10.1155/2015/705275. [Google Scholar]
- Ahmad Reza Yazdanbakhsh, Amir Sheikh Mohammadi, Mahdieh Sardar, Hatam Godini, Mohammad Almasian. COD removal from synthetic wastewater containing Azithromycin using combined coagulation and a Fenton-like process. Environmental Engineering and Management Journal. 13(12).2929–2936(2014). [CrossRef] [Google Scholar]
- Puyol D, Monsalvo VM, Mohedano AF, Sanz JL, Rodriguez JJ. Cosmetic wastewater treatment by up-flow anaerobic sludge blanket reactor. Journal of Hazardous Materials 185(2–3): 1059–1065(2014). doi: 10.1016/j.jhazmat.2010.10.014. [Google Scholar]
- Sirtori C, Petrovic M, Radjenovic J. Solar photocatalytic degradation of persistent pharmaceuticals at pilot-scale: Kinetics and characterization of major intermediate products. Appl. Catal. 89.255−264(2009). [Google Scholar]
- Muhammad Saleem. Pharmaceutical wastewater treatment: a physicochemical study. J. res. Sci. B.Z. Univ.18(2).125–134(2007). [Google Scholar]
- German Buitron, Rosa Maria Melgoza, Leonardo Jimenez. Pharmaceutical Wastewater Treatment Using an Anaerobic/Aerobic Sequencing Batch Biofilter, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering.38(10).2077–2088(2003).doi1081/ese-120023334. [Google Scholar]
- Kanakaraju D, Glass BD, Oelgemller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management. 219.189–207(2018). doi 10.1016/j.jenvman.2018.04.103. [CrossRef] [PubMed] [Google Scholar]
- Phaniendra A, Dinesh Babu Jestadi, Latha Periyasamy. Free radicals: Properties, sources, targets, and their implication in various diseases. Ind. J. Clin. Biochem. 30(1).11–26(2015). doi: 10.1007/s12291-014–0446–0. [CrossRef] [PubMed] [Google Scholar]
- Oller I, Malato S, Sanchez-Perez JA. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination – A review. Science of the Total Environment. 409(20). 4141–4166(2011).doi: 10.1016/j.scitotenv.2010.08.061. [CrossRef] [Google Scholar]
- Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. Chem. Rev. 93(2). 671–698(1993).https://doi.org/10.1021/cr00018a003. [CrossRef] [Google Scholar]
- Patel S, Mondal S, Majumder SK, Das P, Ghosh P. Treatment of a pharmaceutical industrial effluent by a hybrid process of advanced oxidation and adsorption. ACS Omega.5(50).32305–32317(2020). doi:10.1021/acsomega.0c04139. [CrossRef] [PubMed] [Google Scholar]
- Thomas A Ternes, Martin Meisenheimer, Derek McDowell, Frank Sacher, Heinz-Jürgen Brauch, Brigitte Haist-Gulde, Gudrun Preuss, Uwe Wilme, Ninette Zulei-Seibert. Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol.36(7).3855–63(2022).doi: 10.1021/es015757k. [Google Scholar]
- Hua W, Bennett ER, Letcher JR. Ozone treatment and the depletion of detectable pharmaceuticals and atrazine herbicide in drinking water sourced from the upper Detroit River, Ontario, Canada. Water Res.40(12).2259–2266(2006).doi: 10.1016/j.watres.2006.04.033. [CrossRef] [PubMed] [Google Scholar]
- Jasim SY, Irabelli A, Yang P, Ahmed S, Schweitzer L. Presence of Pharmaceuticals and Pesticides in Detroit River Water and the Effect of Ozone on Removal. Ozone: Science & Engineering. 28(6).415–423(2006).doi.org/10.1080/01919510600985945. [Google Scholar]
- Vieno NM, Harkki H, Tuhkanen T, Kronberg L. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ Sci Technol. 41(14).5077–84(2007).doi: 10.1021/es062720x. [CrossRef] [PubMed] [Google Scholar]
- Kulik N, Trapido M, Goi A, Veressinina Y, Munter R. Combined chemical treatment of pharmaceutical effluents from medical ointment production. Chemosphere.70(8): 1525–31(2008). doi 10.1016/j.chemosphere.2007.08.026. [CrossRef] [PubMed] [Google Scholar]
- Balcioglu AI, Otkar M. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes, Chemosphere. 2003; 50:85–95. [CrossRef] [PubMed] [Google Scholar]
- Fisher PMJ, Borland R. Gauging the pharmaceutical urden on S dne ’s environment: A preventative response, Journal of Cleaner Product. 11(3).315–320(2003). doi:10.1016/S0959-6526(02)00048–3. [CrossRef] [Google Scholar]
- Du J, Wang C, Zhao Z, Cui F, Ou Q, Liu J. Role of oxygen and superoxide radicals in promoting H2O2 production during VUV/UV radiation of water. Chem. Eng. Sci.241. 116683(2021). [CrossRef] [Google Scholar]
- Ikehata K, Naghashkar N, El-Din M. Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. Ozone-Sci. Eng. 28 (6). 353–414(2006). https://doi.org/10.1080/01919510600985937. [CrossRef] [Google Scholar]
- Dantas RF, Sans C, Esplugas S. Ozonation of propranolol: transformation, biodegradability, and toxicity assessment. J. Environ. Eng. ASCE. 137(8): 754–759(2011).https://doi.org/10.1061/(ASCE)EE.1943–7870.00003. [CrossRef] [Google Scholar]
- Wang S, Wang J. Degradation of carbamazepine by radiation-induced activation of peroxymonosulfate. Chemical Engineering Journal.336.595–601(2008). https://doi.org/10.1016/j.cej.2017.12.068. [Google Scholar]
- Alharbi S K, Price W E, Kang J, Fujioka T, Nghiem LD. Ozonation of carbamazepine, diclofenac, sulfamethoxazole and trimethoprim and formation of major oxidation products. Desalination and Water Treatment. 57(60).29340–29351(2016). doi:10.1080/19443994.2016.1172986. [CrossRef] [Google Scholar]
- Nakada H, Shinohara A, Murata K, Kiri S, Managaki N, Sato N, Takada H. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine- disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant, Water Res. 41(19). 4373–82(2007). doi:10.1016/j.watres.2007.06.038. [Google Scholar]
- Marcelino RBP, Monica Leao MMD, Lago RM Camila, Amorim CC. Multistage ozone and biological treatment system for real wastewater containing antibiotics. Management.195.110–116(2017).https://doi.org/10.1016/j.jenvman.2016.04.041. [Google Scholar]
- Rekhate CV, Srivastava JK. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater—A review. Chem. Eng. J. Adv. 3.100031(2020). https://doi.org/10.1016/j.ceja.2020.100031 [CrossRef] [Google Scholar]
- Orge CA, Graça CAL, Restivo J, Pereira MFR, Soares OSGP.2024. Catalytic ozonation of pharmaceutical compounds using carbon-based catalysts. Catal. Communications.187.106863(2024).https://doi.org/10.1016/j.catcom.2024.106863. [Google Scholar]
- Dantes R, Contreras S, Sans C, Esplugas S. Sulfamethoxazole abatement by means of ozonation. J. Hazard. Mater. 150(3), 790–794(2008). [CrossRef] [Google Scholar]
- Larsen T, Lienert J, Joss A, Siegrist H. How to avoid pharmaceuticals in the aquatic environment. J. Biotech. 113 (1–3):295–304(2004). doi:10.1016/j.jbiotec.2004.03.033. [CrossRef] [Google Scholar]
- Nawal Taoufik, Wafaa Boumya, Mounia Achak, Mika Sillanpa, Noureddine Barka. Comparative overview of advanced oxidation processes and biological approaches for the removal of pharmaceuticals. Journal of Environmental Management. 288. 112404(2021). https://doi.org/10.1016/j.jenvman.2021.112404. [CrossRef] [PubMed] [Google Scholar]
- Gan S, Lau EV, Ng HK. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 172(2–3), 532–49(2009).doi: 10.1016/j.jhazmat.2009.07.118. [CrossRef] [Google Scholar]
- Modi HJ. Fenton Treatment: A review on treatment of wastewater. International Journal of Engineering Research and Technology. 7(02). 2018.http://dx.doi.org/10.17577/IJERTV7IS020021. [Google Scholar]
- Bautista P, Mohedano AF, Casas JA, Zazo JA, Rodriguez JJ. An overview of the application of Fenton oxidation to industrial wastewater treatment. J. Chem. Technol. Biotechnol. 83.1323–133(2008). https://doi.org/10.1002/jctb.1988. [CrossRef] [Google Scholar]
- Andreozzi R, Caprio V, Insola A, Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today.53(1).51–59(1999). https://doi.org/10.1016/S0920-5861(99)00102–9. [CrossRef] [Google Scholar]
- Trovo AG, Nogueira RFP, Aguera A, Fernandez-Alba AR, Malato S. Degradation of the antibiotic amoxicillin by photo-Fenton process – Chemical and toxicological assessment. Water Research. 45(3):1394–1402(2011). doi:10.1016/j.watres.2010.10.029. [CrossRef] [PubMed] [Google Scholar]
- Ravina M, Campanella L, Kiwi J. Accelerated mineralization of the drug diclofenac via Fenton reactions in a concentric photo-reactor. Water Res. 36(14).3553–3560(2002). doi: 10.1016/s0043-1354(02)00075-1. [CrossRef] [PubMed] [Google Scholar]
- Perez-Estrada LA, Malato S, Gernjak W, Aguera A, Thurman EM, Ferrer I and Fernandez-Alba, AR. Photo Fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environ Sci Technol.9(21).8300–6(2005). doi: 10.1021/es050794n. [CrossRef] [PubMed] [Google Scholar]
- Shemer H, Kunukcu YK, Linden KG. Degradation of the pharmaceutical metronidazole via UV, Fenton and photo- Fenton processes. Chemosphere. 63(2).269–76(2006). doi 10.1016/j.chemosphere.2005.07.029. [CrossRef] [PubMed] [Google Scholar]
- San Sebastian Martinez NS, Fernandez JF, Segura XF, Sanchez Ferrer A. Pre- oxidation of an extremely polluted industrial wastewater by the Fenton’s reagent. J Hazard Mater. 101(3).315–22(2003). doi: 10.1016/s0304-3894(03)00207-3. [CrossRef] [PubMed] [Google Scholar]
- Kajitvichyanukul P, Suntronvipart N. Evaluation of biodegradability and oxidation degree of hospital wastewater using photo-Fenton process as the pretreatment method. J Hazard Mater.138(2). 384–91(2006). doi:10.1016/j.jhazmat.2006.05.064 [CrossRef] [PubMed] [Google Scholar]
- Tekin H, Bilkay O, Ataberk SS, Balta TH, Ceribasi IH, Sanin FD, Dilek FB, Yetis U. Use of Fenton oxidation to improve the biodegradability of pharmaceutical wastewater. J. Hazard. Mater. 136(2).258–65(2006). doi:10.1016/j.jhazmat.2005.12.012. [CrossRef] [Google Scholar]
- Arslan-alaton I, Dogruel S. Pre-treatment of penicillin formulation effluent by advanced oxidation processes. J. Hazard. Mater.12(1–2). 105–113(2004). doi: 10.1016/j.jhazmat.2004.04.009. [CrossRef] [Google Scholar]
- Nadeem A. Khan, Afzal Husain Khan, Preeti Tiwari, Mukarram Zubair and Mu Naushad. Photo-Fenton decomposition of β-blockers atenolol and metoprolol; study and optimization of system parameters and identification of intermediates. Chemosphere. 107.180–186(2014). https://doi.org/10.1016/j.chemosphere.2013.12.031. [CrossRef] [PubMed] [Google Scholar]
- Masood AS, Ali MS, Manzar MS, Khan NA, Khan AH. 2-Current situation of pharmaceutical wastewater around the globe. The Treatment of Pharmaceutical Wastewater. 19–52(2022). https://doi.org/10.1016/B978-0-323–99160–5.00013–8. [Google Scholar]
- Kastanek F, Spacilova M, Krystynik P, Dlaskova M, Solcova O. Advantages and Disadvantages of Fenton Process. Encyclopedia. 2023.Available online: https://encyclopedia.pub/entry/41472 [Google Scholar]
- Pouran SR, Abdul Aziz AR, Daud W. Review on the main advances in photo- Fenton oxidation system for recalcitrant wastewaters. J Ind Eng Chem. 21. 53–69(2015).doi:10.1016/J.JIEC.2014.05.005. [CrossRef] [Google Scholar]
- Punzi M, Mattiasson B, Jonstrup M. Treatment of synthetic textile wastewater by homogeneous and heterogeneous photo- Fenton oxidation. J Photochem Photobiol A: Chemistry. 248. 30–35(2012). doi:10.1016/j.jphotochem.2012.07.017 [CrossRef] [Google Scholar]
- Kong CPY, Suhaimi NAA, Shahri NNM, Lim JW, Nur M, Hobley J, Usman A. Auramine O UV photocatalytic degradation on TiO2 nanoparticles in a heterogeneous aqueous solution. Catalysts. 12(9).975(2022). doi: 10.3390/catal12090975. [CrossRef] [Google Scholar]
- Suhaimi NAA, Kong CPY, Shahri NNM, Nur M, Hobley J, Usman A. Dynamics of diffusion- and immobilization-limited photocatalytic degradation of dyes by metal oxide nanoparticles in binary or ternary solutions. Catalysts. 12(10).1254(2022). doi:10.3390/catal12101254. [CrossRef] [Google Scholar]
- Mondal K, Sharma A. Recent advances in the synthesis and application of photocatalytic metal-metal oxide core-shell nanoparticles for environmental remediation and their recycling process. RSC Advances. 6(87).83589(2016). doi: 10.1039/C6RA18102C. [CrossRef] [Google Scholar]
- Parent YO, Blake DM, Magrini-Bair KA, Lyons CE, Turchi CS, Watt AS, Wolfrum EJ, Prairie MR. Solar photocatalytic processes for the purification of water: State of development and barriers to commercialization. Solar Energy. 56.429–437(1996). doi:10.1016/0038-092X(96)81767–1. [CrossRef] [Google Scholar]
- Choi H, Al-Abed SR, Dionysiou DD, Elias Stathatos, Panagiotis Lianos. TiO2-based advanced oxidation nanotechnologies for water purification and reuse sustainability science and engineering. Chapter.8: 2(C). 229–254(2010). doi:10.1016/S1871-2711(09)00208-6. [Google Scholar]
- Geasean J Johnson, Lendon A Bullen, Mohamad Ridhuan bin Mohd Akil. Review on emerging pollutants and advanced oxidation processes. Int. J. Adv. Res. 5(2).2315–2324(2017). doi:10.21474/IJAR01/3412. [CrossRef] [Google Scholar]
- Qahtan, T.F., Owolabi, T.O., Olubi, O.E. and Hezam, A. State-of-the-art, challenges and prospects of heterogeneous tandem photocatalysis. Coord. Chem. Rev.,492. 2–20(2023).doi:10.1016/j.ccr.2023.215276. [CrossRef] [Google Scholar]
- Wang JL, Xu LJ. Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol. 42(3). 251–325(2012). doi: 10.1080/10643389.2010.507698. [CrossRef] [Google Scholar]
- Zhu J, Zhu Z, Zhang H, Lu J, Qiu Y. Efficient degradation of organic pollutants by peroxymonosulfate activated with MgCuFe-layered double hydroxide. RSC Adv. 9. 2284–2291(2019).doi.10.1039/C8RA09841G. [CrossRef] [PubMed] [Google Scholar]
- Thakur N, Thakur N, Kumar A, Thakur VK, Kalia S, Arya V, Kumar A, Kumar S, Kyzas GZ. A critical review on the recent trends of photocatalytic, antibacterial, antioxidant, and nanohybrid applications of anatase and rutile TiO2 nanoparticles. Sci. Total Environ. 914:169815(2024). https://doi.org/10.1016/j.scitotenv.2023.169815. [CrossRef] [Google Scholar]
- Yang L, Yang J, Yang DQ. A durable super hydrophilic self-cleaning coating based on TiO2–SiO2 -PAA nanocomposite for photovoltaic applications: Long-term outdoor study. Sol. Energy Mater. Sol. Cells. 268:112731(2024). [Google Scholar]
- Abellan MN, Bayarri B, Gimenez J, Costa J. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. App. Cat. B: Environ. 74(3). 233–241(2007). doi:10.1016/j.apcatb.2007.02.017. [CrossRef] [Google Scholar]
- Deegan AM, Shaik B, Nolan K, Urell K, Tobin J, Morrissey A. Treatment options for wastewater effluents from pharmaceutical companies. Int. J. Environ. Sci. Technol.8(3).649–666(2011). https://doi.org/10.1007/BF03326250. [CrossRef] [Google Scholar]
- Doll T, Frimmel F. Cross-flow microfiltration with periodical back- washing for photocatalytic degradation of pharmaceutical and diagnostic residues– evaluation of the long-term stability of the photocatalytic activity of TiO2. Water Res. 39 (5): 847–854(2005). doi:10.1016/j.watres.2004.11.029. [CrossRef] [PubMed] [Google Scholar]
- Lofranoa G, Pedrazzanib R, Libralatoc G, Carotenuto M. Advanced Oxidation Processes for Antibiotics Removal: A Review. Current Organic Chemistry.21. 1–14(2017). doi: 10.2174/1385272821666170103162 813. [Google Scholar]
- Chatzitakis A, Berberidou C, Paspaltsis I, Kyriakou G, Sklaviadis T, Poulios I. Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Res. 42(1–2). 386–94(2008).doi: 10.1016/j.watres.2007.07.030. [CrossRef] [PubMed] [Google Scholar]
- Adish Kumar S, Kanmani S. Treatment of phenolic wastewaters in single baffle reactor by solar/TiO2/H2O2 process. Desalin. Water Treat.24(1–3 :67–73(2010).doi:10.5004/dwt.2010.1183. [CrossRef] [Google Scholar]
- Alaton IA, Dogruel S, Baykal E, Gerone G. Combined chemical and biological oxidation of penicillin formulation effluent. J. Environ. Manage.2004; 73(2).155–63(2004). doi 10.1016/j.jenvman.2004.06.007. [CrossRef] [Google Scholar]
- Doll TE, Frimmel FH. Fate of pharmaceuticals-photodegradation by simulated solar UV light. Chemosphere.52(10). 1757–69(2003). doi:10.1016/S0045-6535(03)00446-6. [CrossRef] [PubMed] [Google Scholar]
- Munoz I, Peral J, Ayllon JA, Malato S, Passarinho P, Domenech X.Life cycle assessment of a coupled solar photocatalytic-biological process for wastewater treatment. Water Res. 40(19):3533–40(2006). doi: 10.1016/j.watres.2006.08.001. [CrossRef] [PubMed] [Google Scholar]
- Coleman HM, Vimonses V, Leslie G, Amal R. Removal of contaminants of concern in water using advanced oxidation techniques. Water Sci Technol. 55(12). 301–6(2007). doi: 10.2166/wst.2007.421. [CrossRef] [PubMed] [Google Scholar]
- Alex Omo Ibhadon, Paul Fitzpatrick. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts. 3. 189–218(2013). doi:10.3390/catal3010189. [CrossRef] [Google Scholar]
- Addamo M, Augugliaro V, Paola A, Garcia-Lopez E, Loddo V, Marci G, Palmisano L. Removal of drugs in aqueous systems by photo-assisted degradation. J. Appl. Electrochem. 35 (7–8). 765–774(2005). doi:10.1007/s10800-005-1630-y. [CrossRef] [Google Scholar]
- Dong H, Zeng G, Tang L, Changzheng Fan, Zhang C, He X, He Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding counter measures. Water Res. 79.128–146(2015). doi: 10.1016/j.watres.2015.04.038. [CrossRef] [PubMed] [Google Scholar]
- Alvarez PJJ, Chan CK, Elimelech M, Halas NJ, Villagran D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnols. 13.634–641(2018). [CrossRef] [PubMed] [Google Scholar]
- Zhang TC, Rao Y, Surampalli, Keith CK Lai, Zhiqiang Hu, RD Tyagi, Irene MC Lo. Nanotechnologies for Water Environment Applications. American Society of Civil Engineers.2009.https://doi.org/10.1061/9780784410301. [Google Scholar]
- Banaschik R, Jablonowski H, Bednarski PJ, Kolb JF. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water. J. Hazard. Mater. 342.651–660(2018). [CrossRef] [Google Scholar]
- Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci. Total Environ. 438. 225–232(2012). https://doi.org/10.1016/j.scitotenv.2012.08.066. [CrossRef] [Google Scholar]
- Thakur, Ina, Anoop Verma, and Banu Ormeci. “Fe–TiO2 Composite Mediated the Hybrid Effect of Photocatalysis and Photo- Fenton for the Inactivation of Escherichia coli Using a Continuous Flow Recirculation Reactor.” Industrial & Engineering Chemistry Research. 60,20 (2021): 7558–7571. [CrossRef] [Google Scholar]
- Thakur, Ina, Anoop Verma, Banu Ormeci, and Vikas Sangal. “Applications of waste- derived visibly active Fe-TiO2 composite incorporating the hybrid process of photocatalysis and photo-Fenton for the inactivation of E. coli.” Environmental Science and Pollution Research. 29,48 (2022): 72247–72259. [CrossRef] [PubMed] [Google Scholar]
- Thakur, Ina, Anoop Verma, and Banu Ormeci. “Solar photocatalytic disinfection of real municipal wastewater using highly durable TiO2-coated composite in a pilot scale once through reactor.” Environmental Science and Pollution Research. 30,15 (2023). 43654–43664. [CrossRef] [Google Scholar]
- Thakur, Ina, Anoop Verma, and Banu Ormeci. “Visibly active Fe-TiO2 composite: A stable and efficient catalyst for the catalytic disinfection of water using a once-through reactor.” Journal of Environmental Chemical Engineering. 9, no. 6 (2021). 106322. [CrossRef] [Google Scholar]
- Thakur, Ina, and Banu Ormeci. “Inactivation of E. coli in water employing Fe-TiO2 composite incorporating in-situ dual process of photocatalysis and photo- Fenton in fixed-mode.” Journal of Water Process Engineering. 33 (2020). 101085. [CrossRef] [Google Scholar]
- Thakur, Ina, Anoop Verma, and Banu Ormeci. “Inactivation of bacteria present in secondary municipal wastewater effluent using the hybrid effect of Fe–TiO2 catalyst.” Journal of Cleaner Production 352 (2022). 131575. [CrossRef] [Google Scholar]
- Fetyan NAH, Attia TMS. Water purification using ultrasound waves: Application and challenges. Arab. J. Basic Appl. Sci. 27(1). 194–207(2020). doi: 10.1080/25765299.2020.1762294. [Google Scholar]
- Serna-Galvis EA, Silva-Agredo J, Giraldo- Aguirre AL, Florez-Acosta OA, Torres- Palma RA. High-frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimimicrobial activity from water. Ultrason. Sonochem. 31. 276–283(2016).doi:10.1016/j.ultsonch.2016.01.007 [CrossRef] [Google Scholar]
- Emery RJ, Papadaki M, Freitas dos Santos LM, Mantzavinos D. Extent of sonochemical degradation and change of toxicity of a pharmaceutical precursor (triphenylphosphine oxide) in water as a function of treatment conditions. Environ Int.31(2): 207–211(2005).doi: 10.1016/j.envint.2004.09.017. [CrossRef] [PubMed] [Google Scholar]
- Ziylan-Yavas Asu, Ince H Nilsun. Single, simultaneous, and sequential applications of ultrasonic frequencies for the elimination of ibuprofen in water. Ultrasonics Sonochemistry. 40.17–23.(2018)https://doi.org/10.1016/j.ultsonch.2017.01.032. [CrossRef] [Google Scholar]
- Madhavan J, Grieser F, Ashokkumar M. Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments. J. Hazard. Mater. 178(1–3). 202–8(2010).doi: 10.1016/j.jhazmat.2010.01.064. [CrossRef] [Google Scholar]
- Kidak R, Ince N. Ultrasonic destruction of phenol and substituted phenols: a review of current research, Ultrason. Sonochem. 13(3).195–9(2006). Doi 10.1016/j.ultsonch.2005.11.004. [CrossRef] [Google Scholar]
- Velegraki T, Poulios I, Charalabaki M, Kalogerakis N, Samaras P, Mantzavinos D. Photocatalytic and sonolytic oxidation of acid orange 7 in aqueous solution, Appl. Catal. B: Environ. 62 (1–2) 159–168(2006). doi: 10.1016/j.apcatb.2005.07.007. [CrossRef] [Google Scholar]
- Ghafoori S, Mowla A, Jahani R, Mehrvar M, Chan PK. Sonophotolytic degradation of synthetic pharmaceutical wastewater: statistical experimental design and modelling. J. Environ. Manage. 150.128–137(2015). doi: 10.1016/j.jenvman.2014.11.011 [CrossRef] [Google Scholar]
- Hjazi A, Almajidi YQ, Kadhum WR, Aly M, Malviya J, Fenjan MN, Alawadi A, Alsaalamy A, Chandramauli A, Baharinikoo L.. Optimization of removal of sulfonamide antibiotics by magnetic nanocomposite from water samples using central composite design. Water Resour. Ind. 30(9–10):100229(2023). doi:10.1016/j.wri.2023.100229. [CrossRef] [Google Scholar]
- Zupanc M, Kompare B, Kosjek T, Petkovsek M, Heath E, Sirok B. Ultrasonics sonochemistry removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrason. Sonochem. 20 4 : 1104–1112(2013). doi: 10.1016/j.ultsonch.2012.12.003. [CrossRef] [Google Scholar]
- Choi, Y., Lee, D., Hong, S., Khan, S., Darya, B., Lee, J.-Y., Chung, J. and Cho, S.-H. Investigation of the Synergistic Effect of Sonolysis and Photocatalysis of Titanium Dioxide for Organic Dye Degradation. Catalysts. 10(5).500(2020). doi:10.3390/catal10050500. [CrossRef] [Google Scholar]
- Garcia-Segura S, Ocon JD, Chong MN. Electrochemical oxidation remediation of real wastewater effluents – a review. Process. Saf. Environ. Prot. 113.48–67(2018).https://doi.org/10.1016/j.psep.2017.09.014. [CrossRef] [Google Scholar]
- Jara CC, Fino D, Specchia V, Saracco G, Spinelli P. Electrochemical removal of antibiotics from wastewater. Applied Catalysis B Environmental. 70(1). 479–487(2007).doi:10.1016/j.apcatb.2005.11.035. [CrossRef] [Google Scholar]
- Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109(12).6541–6569(2009). https://doi.org/10.1021/cr9001319 [CrossRef] [PubMed] [Google Scholar]
- Sires I, Brillas E. Remediation of water pollution caused by ́ pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ. Int. 40.212−229(2012). doi: 10.1016/j.envint.2011.07.012. [CrossRef] [Google Scholar]
- Chiang LC, Chang JE, Wen TC. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res. 29(2).671–678(1995). https://doi.org/10.1016/0043–1354(94)00146-X. [CrossRef] [Google Scholar]
- Saracco G, Solarino L, Aigotti R, Specchia V, Maja M. Electrochemical oxidation of organic pollutants at low electrolyte concentrations. Electrochim. Acta. 46(2): 373–380(2000). doi:10.1016/S0013-4686(00)00594-6. [CrossRef] [Google Scholar]
- Garcia-Espinoza JD, Mijaylova-Nacheva P, Aviles-Flores M. Electrochemical carbamazepine degradation: Effect of the generated active chlorine, transformation pathways, and toxicity. Chemosphere. 192.142–151(2018). doi: 10.1016/j.chemosphere.2017.10.147. [CrossRef] [PubMed] [Google Scholar]
- Svorc L, Borovsk K, Cinkova K, Stankovi DM, Plankova A. Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode. Electrochim. Act.251.621–630(2017).https://doi.org/10.1016/j.electacta.2017.08.077. [CrossRef] [Google Scholar]
- Loos G, Scheers T, Van Eyck K, Van Schepdael A, Adams E, Van der Bruggen B, Cabooter D, Dewil R. Electrochemical oxidation of key pharmaceuticals using a boron-doped diamond electrode. Sep. Purif. Technol. 195.184–191(2018). https://doi.org/10.1016/j.seppur.2017.12.009. [CrossRef] [Google Scholar]
- Kummerer K. Antibiotics in the aquatic environment – a review-Part I. Chemosphere. 75(4):417–434(2009). doi 10.1016/j.chemosphere.2008.11.086. [CrossRef] [PubMed] [Google Scholar]
- Brian P Chaplin. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci.: Processes Impacts. 16.1182–1203(2014).doi.org/10.1039/C3EM00679D. [CrossRef] [PubMed] [Google Scholar]
- Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D. Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol.83(6):769–76(2008). doi:10.1002/jctb.1873. [CrossRef] [Google Scholar]
- Murugananthan M, Yoshihara S, Rakuma T, Uehara N, Shirakashi T. Electrochemical degradation of 17β- estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochim Acta. 52(9).3242–3249(2007). doi: 10.1016/j.electacta.2006.09.073. [CrossRef] [Google Scholar]
- Giannis A, Kalaitzakis M, Diamadopoulos E. Electrochemical treatment of olive mill wastewater. J Chem Technol Biotechnol. 82(7).663–671(2007). doi:10.1002/jctb.1725. [CrossRef] [Google Scholar]
- Brillas E, Sires I, Arias C, Cabot PL, Centellas F, Rodriguez RM, Garrido JA. Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron- doped diamond electrode. Chemosphere.58.399–406(2005). [CrossRef] [PubMed] [Google Scholar]
- Brillas E, Garcia-Segura S, Skoumal M, Arias C. Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes. Chemosphere. 79(6).605–612(2010).doi:10.1016/j.chemosphere.2010.03.004. [CrossRef] [PubMed] [Google Scholar]
- Sires I, Centellas F, Garrido JA, Rodriguez RM, Arias C, Cabot PL, Brillas E. Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe2+ and UVA light as catalysts. Applied Catalysis B Environmental. 72(3–4).373–381(2007a). doi: 10.1016/j.apcatb.2006.12.002. [CrossRef] [Google Scholar]
- Sires I, Arias C, Cabot PL, Centellas F, Garrido JA., Rodríguez RM, Brillas, E. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectron-Fenton. Chemosphere.66(9).1660–1669(2007b).doi:10.1016/j.chemosphere.2006.07.039. [CrossRef] [PubMed] [Google Scholar]
- Najafinejad M S, Chianese S, Fenti A, Iovino P, Musmarra D. Application of Electrochemical Oxidation for Water and Wastewater Treatment: An Overview. Molecules. 28(10).4208(2023). https://doi.org/10.3390/molecules28104208. [CrossRef] [PubMed] [Google Scholar]
- Prasad J Paruleka, Ira Sahasrabudhe, Mrunmayee Hegiste, Surin Gupte. Review of Advanced Oxidation Processes. International Journal of Engineering Research & Technology (IJERT). 13(2). ISSN: 2278–0181(2024). [Google Scholar]
- Munter R. Advanced Oxidation Processes – Current Status and Prospects. Proc. Estonian Acad. Sci. Chem.50(2).59–80(2001). doi:10.3176/chem.2001.2.01. [CrossRef] [Google Scholar]
- Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research. 8(3–4).501–551(2004). https://doi.org/10.1016/S1093-0191(03)00032–7. [CrossRef] [Google Scholar]
- Deng Y, Zhao R. Advanced Oxidation Processes (AOPs) in wastewater treatment. Current Pollution Reports. 1(3). 167–176(2015). https://doi.org/10.1007/s40726015–0015-z. [CrossRef] [Google Scholar]
- Snyder SA, Adham S, Redding AM, Cannon FS, Decarolis J, Oppenheimer J, Wert EC, Yoon Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination.2007;202 1 :156–181. doi:10.1016/j.desal.2005.12.052. [CrossRef] [Google Scholar]
- Arslan-Aalaton I, Dogruel S. Pre-treatment of penicillin formulation effluent by advanced oxidation processes. J. Hazard. Mater. 112(1–2). 105–13(2004).doi: 10.1016/j.jhazmat.2004.04.009. [CrossRef] [Google Scholar]
- Kim, Hyun Young, Kim Tae-Hun, Cha Seok Mun, Yu Seungho. Degradation of sulfamethoxazole by ionizing radiation: Identification and characterization of radiolytic products. Chemical Engineering Journal.313.556–566(2017).doi: 10.1016/j.cej.2016.12.080. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.