Open Access
Issue |
E3S Web Conf.
Volume 599, 2024
6th International Conference on Science and Technology Applications in Climate Change (STACLIM 2024)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 7 | |
Section | Land and Forest | |
DOI | https://doi.org/10.1051/e3sconf/202459903005 | |
Published online | 10 January 2025 |
- A. Antoninka, P. B. Reich, & N. C. Johnson, Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol., 192, 200–214 (2011). https://doi.org/10.1111/j.14698137.2011.03776.x [CrossRef] [PubMed] [Google Scholar]
- A. D. B. Leakey, E. A. Ainsworth, C. J. Bernacchi, A. Rogers, S. P. Long, & D. R. Ort, Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot., 60(10), 2859–2876 (2009). https://doi.org/10.1093/jxb/erp096 [CrossRef] [PubMed] [Google Scholar]
- B. A. Kimball, S. B. Idso, S. Johnson, & M. C. Rillig, Seventeen years of carbon dioxide enrichment of sour orange trees: final results. Glob. Chang. Biol., 13, 2171–2183 (2007). https://doi.org/10.1111/j.1365-2486.2007.01430.x [CrossRef] [Google Scholar]
- B. Drigo, G. A. Kowalchuk, B. A. Knapp, A. S. Pijl, H. T. S. Boschker, & J. A. van Veen, Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Global Change Biol., 19(2), 621–636 (2013). https://doi.org/10.1111/gcb.12045 [CrossRef] [PubMed] [Google Scholar]
- B. Drigo, T. C. H. Anderson, M. D. B. Houghton, G. T. H. B. B. Smith, & R. L. McKenzie, Impacts of elevated carbon dioxide on belowground fungal communities. Global Change Biology, 14(2), 412–425 (2008). https://doi.org/10.1111/j.13652486.2007.01445.x [Google Scholar]
- C. Gao, Y. C. Kim, Y. Zheng, W. Yang, L. Chen, N. N. Ji, S. Q. Wan, & L. D. Guo, Increased precipitation, rather than warming, exerts a strong influence on arbuscular mycorrhizal fungal community in a semiarid steppe ecosystem. Botany, 94, 459–469 (2016). https://doi.org/10.1139/cjb-2015-0210 [CrossRef] [Google Scholar]
- E. Joner, The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhiza-mediated phosphorus uptake in subterranean clover. Biology and Fertility of Soil,s 32, 435–440 (2000). https://doi.org/10.1139/cjb-2015-0210 [CrossRef] [Google Scholar]
- H. P. Khoo, “The geology of Sungai Tekai area, Pahang,” in Annual Report for 1976, Geological Survey of Malaysia Ministry of Primary Industries, Malaysia, pp. 93–103, (1977). [Google Scholar]
- I. Hiiesalu, M. Pärtel, J. Davison, P. Gerhold, M. Metsis, M. Moora, M. Öpik, M. Vasar, M. Zobel, S. D. Wilson, Species richness of arbuscular mycorrhizal fungi: associations with grass-land plant richness and biomass. New Phytologist, 203, 233–244 (2014). https://doi.org/10.1111/nph.12765 [CrossRef] [PubMed] [Google Scholar]
- J. Birgander, J. Rousk, & P. A. Olsson, Warmer winters increase the rhizosphere carbon flow to mycorrhizal fungi more than to other microorganisms in a temperate grassland. Glob. Chang. Biol., 23, 5372–5382 (2017). https://doi.org/10.1111/gcb.13803 [CrossRef] [PubMed] [Google Scholar]
- J. L. Cao, L. Xie, Y. X. Zheng, & Y. S. Yang, Drought intensifies the effects of warming on root-colonizing arbuscular mycorrhizal fungal community in subtropical Chinese fir plantation. For. Ecol. Manag., 464, 118042 (2020). https://doi.org/10.1016/j.foreco.2020.118078 [Google Scholar]
- J. M. McGrath, & D. B. Lobell, Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant Cell Environ., 36(3), 697–705 (2012). https://doi.org/10.1111/pce.12007 [Google Scholar]
- J. N. Klironomos, M. F. Allen, M. C. Rillig, et al. Abrupt rise in atmospheric CO2 overestimates community response in a model plant–soil system. Nature, 433, 621–624 (2005). https://doi.org/10.1038/nature03268. [CrossRef] [PubMed] [Google Scholar]
- J. Zhang, X. Tang, X. He, & J. Liu, Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: potential consequences for soil carbon accumulation. Soil Biol. Biochem, 83, 142–149 (2015). https://doi.org/10.1016/j.soilbio.2015.01.023 [CrossRef] [Google Scholar]
- K. K. Treseder, A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist, 164(2), 347–355 (2004). https://doi.org/10.1111/j.1469-8137.2004.01159.x [CrossRef] [PubMed] [Google Scholar]
- K. K. Treseder, L. M. Egerton-Warburton, M. F. Allen, et al. Alteration of soil carbon pools and communities of mycorrhizal fungi in chaparral exposed to elevated carbon dioxide. Ecosystems, 6, 786–796 (2003). https://doi.org/10.1007/s10021-003-0182-4 [CrossRef] [Google Scholar]
- L. D. Bainard, M. Dai, E. F. Gomez, Y. Torres-Arias, J. D. Bainard, M. Sheng, W. Eilers, & C. Hamel, Arbuscular mycorrhizal fungal communities are influenced by agricultural land use and not soil type among the Chernozem great groups of the Canadian Prairies. Plant and Soil, 387, 351–362 (2015). https://doi.org/10.1007/s11104-014-2288-1 [CrossRef] [Google Scholar]
- L. Marryanna, S. Noguchi, Y. Kosugi, K. Niiyama, M. Itoh, T. Sato, S. Takanashi, S. Siti-Aisah, and K. Abd-Rahman, “Spatial distribution of soil moisture and its influence on stand structure in a lowland dipterocarp forest in peninsular Malaysia,” Journal of Tropical Forest Science (JTFS), 31(2), pp. 135–150 (2019). https://doi.org/10.26525/jtfs2019.31.2.135150 [CrossRef] [Google Scholar]
- L. Wang, X. Jia, Y. Zhao, C. Zhang, Y. Gao, X. Li, K. Cao, & N. Zhang, Effects of elevated CO2 on arbuscular mycorrhizal fungi associated with Robinia pseudoacacia L. grown in cadmium-contaminated soils. Sci. Total Environ., 768, 144453 (2021). https://doi.org/10.1016/j.scitotenv.2020.144453 [CrossRef] [Google Scholar]
- M. E. Dusenge, A. G. Duarte, & D. A. Way, Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol., 221, 32–49 (2019). https://doi.org/10.1111/nph.15283 [CrossRef] [PubMed] [Google Scholar]
- M. G. A. Van Der Heijden, R. D. Bardgett, & N. M. Van Straalen, The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296–310 (2008). https://doi.org/10.1111/j.14610248.2007.01139.x [CrossRef] [Google Scholar]
- M. J. C. Norsheilla, M. Azian, P. Ismail, W. A. Wan Mohd Shukri, & M. Samsudin, “Institut Penyelidikan Perhutanan Malaysia: +82-10-3436-1758 Manual sistem Free Air CO2 Enrichment,” Gigabit Communication, Puchong, 2018. ISBN 978-967-2149-13-2 (2018). [Google Scholar]
- M. Öpik, M. Moora, M. Zobel, Ü. Saks, R. Wheatley, F. Wright, & T. Daniell, High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytologist, 179(3), 867–876 (2008). https://doi.org/10.1111/j.1469-8137.2008.02515.x [Google Scholar]
- M. S. Amir Husni, Z. Mona, H. Mohd Ghazali, and A. Rozita, “Nutrient Dynamics of Tekam Forest Reserve, Peninsular Malaysia, Under Different Logging Phases,” Journal of Tropical Forest Science (JTFS), vol. 2, no. 1, pp. 71–80, (1989). https://jtfs.frim.gov.my/jtfs/article/view/2086 [Google Scholar]
- N. C. Johnson, J. Wolf, M. A. Reyes, A. Panter, G. W. Koch, & A. Redman, Species of plants and associated arbuscular mycorrhizal fungi mediate mycorrhizal responses to CO2 enrichment. Glob. Chang. Biol., 11(7), 1156–1166 (2005). https://doi.org/10.1111/j.1365-2486.2005.00967.x [CrossRef] [Google Scholar]
- S. Rodríguez-Echeverría, H. Teixeira, M. Correia, S. Correia, R. Heleno, M. Öpik, & M. Moora, Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytologist, 213, 380–390 (2017). https://doi.org/10.1111/nph.14122 [CrossRef] [PubMed] [Google Scholar]
- T. A. Cotton, Arbuscular mycorrhizal fungal communities and global change: an uncertain future. FEMS microbiology ecology, 94(11) (2018). https://doi.org/10.1093/femsec/fiy179 [CrossRef] [Google Scholar]
- T. Daniell, R. Husband, A. Fitter, & J. Young, Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiol. Ecol., 36, 203–209 (2001). https://doi.org/10.1111/j.1574-6941.2001.tb00841.x [CrossRef] [Google Scholar]
- T. E. Cotton, A. H. Fitter, R. M. Miller, A. J. Dumbrell, & T. Helgason, Fungi in the future: interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities. New Phytol., 205(4), 1598–1607 (2015). https://doi.org/10.1111/nph.13224 [CrossRef] [PubMed] [Google Scholar]
- T. J. Thirkell, D. Pastok, & K. J. Field, Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Glob. Chang. Biol., 26, 1725–1738 (2020). https://doi.org/10.1111/gcb.14851 [CrossRef] [PubMed] [Google Scholar]
- X. Sun, Y. Su, Y. Zhang, M. Wu, Z. Zhang, K. Pei, L. Sun, S. Wan, & Y. Liang, Diversity of arbuscular mycorrhizal fungal spore communities and its relations to plants under increased temperature and precipitation in a natural grassland. Chinese Science Bulletin, 58, 4109–4119 (2013). https://doi.org/10.1007/s11434-013-5961-5 [CrossRef] [Google Scholar]
- Y. Kim, C. Gao, Y. Zheng, W. Yang, L. Chen, X. He, L.-D. Guo, Different responses of arbuscular mycorrhizal fungal community to day-time and night-time warming in a semiarid steppe. Chin. Sci. Bull., 59(35), 5080–5089 (2014). https://doi.org/10.1007/s11434-014-0602-1 [CrossRef] [Google Scholar]
- Y. Qiu, L. Guo, X. Xu, L. Zhang, K. Zhang, M. Chen, Y. Zhao, K. O. Burkey, H. D. Shew, R. W. Zobel, Y. Zhang, & S. Hu, Warming and elevated ozone induce trade offs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. Sci. Adv., 7, eabe9256 (2021). https://doi.org/10.1126/sciadv.abe9256 [CrossRef] [Google Scholar]
- Y. Y. Wang, M. Vestberg, C. Walker, T. Hurme, X. Zhang, & K. Lindström, Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of Chinese mainland. Mycorrhiza, 18, 59–68 (2008). https://doi.org/10.1007/s00572-008-0161-x [CrossRef] [PubMed] [Google Scholar]
- Z. Liu, Z. Yu, B. Song, Y. Li, J. Fang, Y. Guo, J. Jin, & J. M. Adams, Elevated CO2 and temperature increase arbuscular mycorrhizal fungal diversity, but decrease root colonization, in maize and wheat. Sci. Total Environ., 873, 162321 (2023). https://doi.org/10.1016/j.scitotenv.2023.162321 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.