Open Access
Issue
E3S Web Conf.
Volume 483, 2024
The 3rd International Seminar of Science and Technology (ISST 2023)
Article Number 01016
Number of page(s) 10
Section Collaborative Contribution to Sustainable Environment
DOI https://doi.org/10.1051/e3sconf/202448301016
Published online 31 January 2024
  1. S. M. Mousavi, G. Brodie, K. Payghamzadeh, T. Raiesi, A. K. Strivastava, Lead Bioavailability in the Environment: Its Exposure and and Effects. J. Adv. Environ. Heal. Res. 10, 1 (2022). https://doi.org/10.32598/jaehr.10.1.1256 [CrossRef] [Google Scholar]
  2. RCS. (2009, Oct. 23). Lead [Online]. Available: https://www.rsc.org/periodic-table/element/82/lead [Google Scholar]
  3. WHO. (2023, Aug. 11). Lead poisoning [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health [Google Scholar]
  4. A. L. Wani, A. Ara, J. A. Usmani, Lead toxicity: A review. Interdiscip. Toxicol. 8, 55 (2015). https://doi.org/10.1515/intox-2015-0009 [CrossRef] [Google Scholar]
  5. K. Staudinger, V. Roth, “Occupational lead poisoning. Am Fam Physician, 57, 719 (1998). PMID: 9490995 [PubMed] [Google Scholar]
  6. N. F. Lokman, N. H. Azeman, F. Suja, N. Arsad, A. A. A. Bakar, Sensitivity enhancement of Pb(II) ion detection in rivers using SPR-based Ag metallic layer coated with chitosan–graphene oxide nanocomposite. Sensors 19, 5159 (2019). https://doi.org/10.3390/s19235159 [CrossRef] [PubMed] [Google Scholar]
  7. J. Staessen, R. Lauwerys, J. Buchet, C. Bulpitt, D. Rondia, Y. Vanrenterghem, A. Amery, C. Group, “Impairment of Renal Function with Increasing Blood Lead Concentrations in the General Population,” New Engl. J. Med. 327, 151 (1992). https://doi.org/10.1056/NEJM199207163270303 [CrossRef] [PubMed] [Google Scholar]
  8. WHO. (2022, Oct. 23). Almost 1 million people die every year due to lead poisoning, with more children suffering long-term health effects [Online]. Available: https://www.who.int/news/item/23-10-2022-almost-1-million-people-die-every-year-due-to-lead-poisoning--with-more-children-suffering-long-term-health-effects [Google Scholar]
  9. W. Q. Lai, Y. F. Chang, F. N. Chou, D. M. Yang, Portable FRET-Based Biosensor Device for On-Site Lead Detection. Biosensors, 12, 1 (2022). https://doi.org/10.3390/bios12030157 [Google Scholar]
  10. N. K. Arora, I. Mishra, “Sustainable development goal 6: Global Water Security,” Environ. Sustain. 5, 271 (2022) https://doi.org/10.1007/s42398-022-00246-5 [CrossRef] [Google Scholar]
  11. D. Zhang, M. Sun, L. Zou, A Review on Spectrometer of Pb ( II ) in Water, In Computer and Computing Technologies in Agriculture VIII. CCTA 2014. (2014). https://doi.org/10.1007/978-3-319-19620-6_75 [Google Scholar]
  12. Y. Jiang, Y. Wang, F. Meng, B. Wang, Y. Cheng, C. Zhu. N-doped carbon dots synthesized by rapid microwave irradiation as highly fluorescent probes for Pb2+ detection. New J. Chem. 39, 3357 (2015). https://doi.org/10.1039/c5nj00170f [CrossRef] [Google Scholar]
  13. M. Chen, M. Hassan, H. Li, Q. Chen. Fluorometric determination of lead(II) by using aptamer-functionalized upconversion nanoparticles and magnetite-modified gold nanoparticles. Microchim. Acta, 187, (2020). https://doi.org/10.1007/s00604-019-4030-4 [Google Scholar]
  14. P.-H. Li, Z.-Y. Song, M. Yang, S.-H. Chen, X.-Y. Xiao, W. Duan, L.-N. Li, and X.-J. Huang, Electrons in Oxygen Vacancies and Oxygen Atoms Activated by Ce3+/Ce4+ Promote High-Sensitive Electrochemical Detection of Pb(II) over Ce-Doped α-MoO3 Catalysts Anal. Chem. 92, 16089 (2020). https://doi.org/10.1021/acs.analchem.0c03725 [CrossRef] [PubMed] [Google Scholar]
  15. Z. Tao, Y. Zhou, N. Duan, Z. Wang, A colorimetric aptamer sensor based on the enhanced peroxidase activity of functionalized graphene/fe3 o4-aunps for detection of lead (II) ions. Catalysts 10, 600 (2020), https://doi.org/10.3390/catal10060600 [CrossRef] [Google Scholar]
  16. Y. Cai, B. Ren, C. Peng, C. Zhang, X. Wei, Highly Sensitive and Selective Fluorescence ‘Turn-On’ Detection of Pb (II) Based on Fe3O4@Au-FITC Nanocomposite. Molecules 26, 3180 (2021). https://doi.org/10.3390/molecules26113180 [CrossRef] [PubMed] [Google Scholar]
  17. M. P. Boy, K. O. Karina, B. David, C. Yu, Study of glucose binding protein encapsulated gold nanoclusters by molecular dynamic simulation. Mater. Sci. Forum, 948, 133 (2019), https://doi.org/10.4028/www.scientific.net/MSF.948.133 [CrossRef] [Google Scholar]
  18. A. Sannigrahi, S. Chowdhury, I. Nandi, D. Sanyal, S. Chall, K. Chattopadhyay, Development of a near infrared Au-Ag bimetallic nanocluster for ultrasensitive detection of toxic Pb2+ ions: In vitro and inside cells. Nanoscale Adv. 1, 3660 (2019). https://doi.org/10.1039/c9na00459a [CrossRef] [Google Scholar]
  19. A. Mathew, P. R. Sajanlal, T. Pradeep, A fifteen atom silver cluster confined in bovine serum albumin. J. Mater. Chem., 21, 11205 (2011). https://doi.org/10.1039/c1jm11452b [CrossRef] [Google Scholar]
  20. A. Bujacz, Structures of bovine, equine and leporine serum albumin. Acta Crystallogr. Sect. D Biol. Crystallogr. 68, 1278 (2012). https://doi.org/10.1107/S0907444912027047 [CrossRef] [PubMed] [Google Scholar]
  21. K. A. Majorek, P. J. Porebski, A. Dayal, M. D. Zimmerman, K. Jablonska, A. J. Stewart, M. Chruszcz, W. Minor, Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol. 52, 174 (2012) https://doi.org/10.1016/j.molimm.2012.05.011 [CrossRef] [Google Scholar]
  22. B. Sekula, K. Zielinski, A. Bujacz, Crystallographic studies of the complexes of bovine and equine serum albumin with 3, 5-diiodosalicylic acid. Int. J. Biol. Macromol. 60, 316 (2013). https://doi.org/10.1016/j.ijbiomac.2013.06.004 [CrossRef] [Google Scholar]
  23. A. Bujacz, K. Zielinski, B. Sekula, Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen. Proteins Struct. Funct. Bioinforma. 82, 2199 (2014). https://doi.org/10.1002/prot.24583 [CrossRef] [Google Scholar]
  24. R. Castagna, S. Donini, P. Colnago, A. Serafini, E. Parisini, C. Bertarelli, Biohybrid Electrospun Membrane for the Filtration of Ketoprofen Drug from Water. ACS Omega, 4, 13270 (2019). https://doi.org/10.1021/acsomega.9b01442 [CrossRef] [PubMed] [Google Scholar]
  25. I. Gazi, L. B. Johansen, T. Huppertz, Heterogeneity, Fractionation, and Isolation. Encycl. Dairy Sci., 893 (2022). https://doi.org/10.1016/B978-0-12-818766-1.00278-6 [Google Scholar]
  26. B. A. Russell, K. Kubiak-Ossowska, P. A. Mulheran, D. J. S. Birch, Y. Chen, Locating the nucleation sites for protein encapsulated gold nanoclusters: A molecular dynamics and fluorescence study. Phys. Chem. Chem. Phys. 17, 21935 (2015). https://doi.org/10.1039/c5cp02380g [CrossRef] [PubMed] [Google Scholar]
  27. S. S, D. V, S. Karunakaran Yesodha, Ultrastable Gold–Copper Nanoclusters on Nitrogen-Doped Graphene Quantum Dots for Selective Electrochemical and Fluorescence Sensing of Glycine. ACS Appl. Nano Mater. 6, 9404 (2023) https://doi.org/10.1021/acsanm.3c01122 [CrossRef] [Google Scholar]
  28. X. Le Guével, B. Hötzer, G. Jung, K. Hollemeyer, V. Trouillet, M. Schneider, Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J. Phys. Chem. C, 115, 10955 (2011). https://doi.org/10.1021/jp111820b [CrossRef] [Google Scholar]
  29. J. S. Mohanty, P. L. Xavier, K. Chaudhari, M. S. Bootharaju, N. Goswami, S. K. Pal, T. Pradeep, Luminescent, bimetallic AuAg alloy quantum clusters in protein templates Nanoscale. 4, 4255 (2012). https://doi.org/10.1039/c2nr30729d [CrossRef] [PubMed] [Google Scholar]
  30. G. K. Kinuthia, V. Ngure, D. Beti, R. Lugalia, A. Wangila, L. Kamau, Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Sci. Rep. 10, 1 (2020). https://doi.org/10.1038/s41598-020-65359-5 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.