Open Access
Issue
E3S Web Conf.
Volume 483, 2024
The 3rd International Seminar of Science and Technology (ISST 2023)
Article Number 02008
Number of page(s) 12
Section Sustainable Living through Functional and Eco-friendly Agricultural Trends
DOI https://doi.org/10.1051/e3sconf/202448302008
Published online 31 January 2024
  1. X. Wang, J. Jiang, W. Gao, Reviewing textile wastewater produced by industries: characteristics, environmental impacts, and treatment strategies. Water Sci. Technol. 85, 7 (2022). https://doi.org/10.2166/wst.2022.088 [Google Scholar]
  2. B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile, and J. C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3, 2 (2019). https://doi.org/10.1016/j.biori.2019.09.001. [Google Scholar]
  3. C.E. Onu, P. E. Ohale, I. A. O. Okafo, C.O. Asadu, C.C. Okoye, E. V. Ojukwu & E.E. Ezennajiego, Application of Rice Husk-Based Biomaterial in Textile Wastewater Treatment. Spinger. 2022. https://doi.org/10.1007/978-981-19-2852-9_12. [Google Scholar]
  4. G. K. Jayathunga and B. M. W. P. K. Amarasinghe, Rice Husk Based Adsorbents for Textile Effluent Treatment. Eng. J. Inst. Eng. Sri Lanka. 42, 4 (2009). http://dx.doi.org/10.4038/engineer.v42i4.7041. [Google Scholar]
  5. M. M. Rahman, Q. H. Bari, and M. A. Yousuf, Treatment of textile wastewater with activated carbon produced from rice husk. JES. 02, 2 (2011). [Google Scholar]
  6. Z. Shamsollahi and A. Partovinia, Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review. J. Environ. Manage. 246 (2019). https://doi.org/10.1016/j.jenvman.2019.05.145. [Google Scholar]
  7. V. H. T. Pham, J. Kim, S. Chang, J. Shim, W. Chung, and D. Bang, Rice Husk— Cellulose-Based Agricultural Waste Enhances the Degradation of Synthetic Dyes Using Multiple Enzyme-Producing Extremophiles. Microorganisms. 11, 8 (2023). https://doi.org/10.3390/microorganisms11081974. [Google Scholar]
  8. J. Lacuesta, I. B. V. Erramuspe, L. Sobhana, D. Kronlund, J. Peltonen, S. Gutiérrez, P. Fardim, Rice Husk Bio-Chars as Adsorbent for Methylene Blue and Ethinylestradiol from Water. J. Renew. Mater. 8, 3, (2020). https://doi.org/10.32604/jrm.2020.08861. [Google Scholar]
  9. D. Kalderis, D. Koutoulakis, P. Paraskeva, E. Diamadopoulos, E. Otal, J. O. del Valle, C. F. Pereira, Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. CEJ. 144, 1, (2008). https://doi.org/10.1016/j.cej.2008.01.007. [Google Scholar]
  10. APHA, Standard Methods for the Examination of Water and Wastewater (23rd ed.), (American Public Health Association, Washington DC, 2017). [Google Scholar]
  11. N. A. Miranda, J. S. Yumi, and M. Escudey, Effect of cations in the background electrolyte on the adsorption kinetics of copper and cadmium and the isoelectric point of imogolite. J. Hazard. Mater. 299 (2015). https://doi.org/10.1016/j.jhazmat.2015.08.007 [Google Scholar]
  12. J. E. Gaayda, F. E. Titchou, R. Oukhrib, P. S. Yap, T. Liu, M. Hamdani, R. A. Akbour, Natural flocculants for the treatment of wastewaters containing dyes or heavy metals: A state-of-the-art review. J. Environ. Chem. Eng. 9, 5 (2021). https://doi.org/10.1016/j.jece.2021.106060. [Google Scholar]
  13. N. C. Feng and X. Y. Guo, Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Trans. Nonferrous Met. Soc. China. 22, 5 (2012). https://doi.org/10.1016/S1003-6326(11)61309-5. [Google Scholar]
  14. Q. Yang, Q. Kang, Q. Huang, Z. Cui, Y. Bai, and H. Wei, Linear correlation analysis of ammunition storage environment based on Pearson correlation analysis, J. Phys. Conf. Ser. 1948, 1 (2021). DOI 10.1088/1742-6596/1948/1/012064 [Google Scholar]
  15. G. L. Dotto and G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8, 4 (2020). DOI 10.1016/j.jece.2020.103988. [CrossRef] [Google Scholar]
  16. I. Bassasan, T. Ismail, M. Taqi, and H. Yazid, Trend of Continuous Auditing Research: A Bibliometric Analysis, in Proceedings of the International Conference on Sustainability in Technological, Environmental, Law, Management, Social and Economic Matters, Bandar Lampung, Indonesia, November 4-5 (2022). [Google Scholar]
  17. D. S. B. T. Patabandige, S. H. Wadumethrige, and S. Wanniarachchi, H3PO4-activated sawdust and rice husk as effective decolorizers for textile wastewater containing Reactive Black 5. Int. J. Environ. Sci. Technol. 16, 12 (2019). DOI 10.1007/s13762-019-02394-4. [Google Scholar]
  18. M. M. Alam, M. A. Hossain, M. D. Hossain, M.A.H. Johir, J. Hossen, M. S. Rahman, J. L. Zhou, A.T.M.K. Hasan, A. K. Karmakar, and M. B. Ahmed, The Potentiality of Rice Husk-Derived Activated Carbon: From Synthesis to Application. Processes, 8, 2 (2020). https://doi.org/10.3390/pr8020203. [Google Scholar]
  19. J. O. Quansah, T. Hlaing, F. N. Lyonga, P. P. Kyi, S. H. Hong, C. G. Lee, and S. J. Park, “Nascent Rice Husk as an Adsorbent for Removing Cationic Dyes from Textile Wastewater, Appl. Sci. 10, 10 (2020). https://doi.org/10.3390/app10103437. [CrossRef] [Google Scholar]
  20. S. Sivalingam and S. Sen, Rice husk ash derived nanocrystalline ZSM-5 for highly efficient removal of a toxic textile dye. J. Mater. Res. Technol. 9, 6 (2020). https://doi.org/10.1016/j.jmrt.2020.10.074. [Google Scholar]
  21. M. S. Hasanin, “Sustainable hybrid silica extracted from rice husk with polyvinyl alcohol and nicotinic acid as multi adsorbent for textile wastewater treatment. Environ. Sci. Pollut. Res. 27, 21 (2020). https://doi.org/10.1007/s11356-020-09104-5. [Google Scholar]
  22. N. H. Abdullah, N. A. A. Salim, B. B. Hamid, M. A. Nizamdin, M. F. Mubarak, A. Fadhil, N. S. Azman, N. F. Zon, M. Kaamin, A. K. Suwandi, N. Ahmad, Z. M. Lazim, M. Nuid, and N. A. Zainuddin, Title Kinetic and Equilibrium Studies for Dye Adsorption onto Sugarcane Bagasse and Rice Husks. J. Chem. Heal. Risk. 11, 3 (2021). https://doi.org/10.22034/jchr.2021.682247. [Google Scholar]
  23. K. K. Hummadi, S. Luo, and S. He, Adsorption of methylene blue dye from the aqueous solution via bio-adsorption in the inverse fluidized-bed adsorption column using the torrefied rice husk. Chemosphere. 287, (2022). https://doi.org/10.1016/j.chemosphere.2021.131907 [Google Scholar]
  24. S. Lubis, I. Mustafa, Y. Ermanda, and M. Ramadhani, Preparation of SiO2 /α-Fe2O3 Composite from Rice Husk and Iron Sand as a Photocatalyst for Degradation of Acid Black 1 Dye. Journal of Physics: Conference Series. 1819, 1, (2021). DOI 10.1088/1742-6596/1819/1/012010. [Google Scholar]
  25. N. E. A. A. Rahim, N. I. W. Azelee, M. N. F. M. Ghazali, N. M. S. Ismail, and N. H. Abdul Manas, Process parameter study and kinetic of remazol dye adsorption onto local rice husk‐based organic porous materials. Environ. Qual. Manag. 33, 2 (2023). https://doi.org/10.1002/tqem.22078. [Google Scholar]
  26. Y. Yang, T. M. P. Nguyen, H. T. Van, Q. T. Nguyen, T. H. Nguyen, T. B. L. Nguyen, L. P. Hoang, D. V. Thanh, T. V. Nguyen, V. Q. Nguyen, P. Q. Thang, M. Yılmaz, V. G. Le, ZnO nanoparticles loaded rice husk biochar as an effective adsorbent for removing reactive red 24 from aqueous solution. Mater. Sci. Semicond. Process. 150, (2022). https://doi.org/10.1016/j.mssp.2022.106960. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.