Open Access
Issue
E3S Web Conf.
Volume 600, 2024
The 6th International Geography Seminar (IGEOS 2023)
Article Number 07002
Number of page(s) 11
Section Technological Application in Geography
DOI https://doi.org/10.1051/e3sconf/202460007002
Published online 29 November 2024
  1. V. M. Ponce, Engineering hydrology: Principles and practices. Prentice Hall Englewood Cliffs, NJ (1989) [Google Scholar]
  2. E. Oztemel and S. Gursev, “Literature review of Industry 4.0 and related technologies”, Journal of Intelligent Manufacturing, vol. 31, no. 1, pp. 127–182 (2020) [CrossRef] [Google Scholar]
  3. H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0”, Business & information systems engineering, vol. 6, no. 4, pp. 239–242 (2014) [CrossRef] [Google Scholar]
  4. M. Gubán and G. Kovács, “INDUSTRY 4.0 CONCEPTION”, Acta Technica Corvininesis-Bulletin of Engineering, vol. 10, no. 1 (2017) [Google Scholar]
  5. G. Beier, S. Niehoff, and M. Hoffmann, “Industry 4.0: a step towards achieving the SDGs? A critical literature review”, Discover Sustainability, vol. 2, no. 1, pp. 1–21 (2021) [CrossRef] [Google Scholar]
  6. M. Lotfi, M. R. Hamblin, and N. Rezaei, “COVID-19: Transmission, prevention, and potential therapeutic opportunities”, Clinica chimica acta (2020) [Google Scholar]
  7. L. Cirrincione et al., “COVID-19 pandemic: prevention and protection measures to be adopted at the workplace”, Sustainability, vol. 12, no. 9, p. 3603 (2020) [CrossRef] [Google Scholar]
  8. A. Notari and G. Torrieri, “COVID-19 transmission risk factors”, arXiv preprint arXiv:2005.03651 (2020) [Google Scholar]
  9. F. Jiang, L. Deng, L. Zhang, Y. Cai, C. W. Cheung, and Z. Xia, “Review of the clinical characteristics of coronavirus disease 2019 (COVID-19)”, Journal of general internal medicine, vol. 35, no. 5, pp. 1545–1549 (2020) [CrossRef] [PubMed] [Google Scholar]
  10. R. Djalante et al., “Review and analysis of current responses to COVID-19 in Indonesia: Period of January to March 2020”, Progress in Disaster Science, vol. 6, p. 100091 (2020) [CrossRef] [PubMed] [Google Scholar]
  11. F. F. Dias et al., “A comparison of online and in-person activity engagement: The case of shopping and eating meals”, Transportation Research Part C: Emerging Technologies, Article vol. 114, pp. 643–656 (2020) [CrossRef] [Google Scholar]
  12. D. Holmes, Virtual globalization: Virtual spaces/tourist spaces. Routledge (2002) [Google Scholar]
  13. H. Yu and S. L. Shaw, “Exploring potential human activities in physical and virtual spaces: A spatio‐temporal GIS approach”, International Journal of Geographical Information Science, vol. 22, no. 4, pp. 409–430 (2008) [CrossRef] [Google Scholar]
  14. S.-L. Shaw and H. Yu, “A GIS-based time-geographic approach of studying individual activities and interactions in a hybrid physical–virtual space”, Journal of Transport Geography, vol. 17, no. 2, pp. 141–149 (2009) [CrossRef] [Google Scholar]
  15. D. Wójcik, “Geography and the future of stock exchanges: between real and virtual space”, Growth and Change, vol. 38, no. 2, pp. 200–223 (2007) [CrossRef] [Google Scholar]
  16. S. Muhammad, H. F. L. Ottens, and T. De Jong, “Modelling the impact of telecommuting on future urbanisation in the Netherlands”, (in English), Tijdschrift voor Economische en Sociale Geografie, Article vol. 99, no. 2, pp. 160177 (2008) [Google Scholar]
  17. R. Rachmawati and Rijanta, “Population Mobility and Urban Spatial Structure : Does the Use of Information and Communication Technology Matter?”, 地域学研究 = Regional views, no. 25, pp. 9–19, 2012/03 (2012) [Google Scholar]
  18. M. Z. Irawan, M. Rizki, T. B. Joewono, and P. F. Belgiawan, “Exploring the intention of out-of-home activities participation during new normal conditions in Indonesian cities”, (in English), Transportation Research Interdisciplinary Perspectives, Article vol. 8, Art. no. 100237 (2020) [Google Scholar]
  19. Badan Pusat Statistik, “Statistik E-Commerce”, (2019) [Google Scholar]
  20. B. Pamungkas, K. Munibah, and S. Soma, “Land use changes and relation to urban heat island (case study Semarang City, Central Java)”, in IOP Conference Series: Earth and Environmental Science, vol. 399, no. 1, p. 012069: IOP Publishing (2019) [CrossRef] [Google Scholar]
  21. B. K. Yogyakarta, “Kota Yogyakarta Dalam Angka Tahun 2008 [Yogyakarta City in Figure 2008]”, (2008) [Google Scholar]
  22. B. K. Yogyakarta, “Kota Yogyakarta Dalam Angka Tahun 2018 [Yogyakarta City in Figure 2018]”, (2018) [Google Scholar]
  23. T. Kohonen, “The self-organizing map”, Proceedings of the IEEE, vol. 78, no. 9, pp. 1464–1480, 1990. [CrossRef] [Google Scholar]
  24. T. Kohonen, “Essentials of the self-organizing map”, Neural networks, vol. 37, pp. 52–65 (2013) [CrossRef] [PubMed] [Google Scholar]
  25. S. Shanmuganathan, “Artificial neural network modelling: An introduction”, in Artificial neural network modelling: Springer, pp. 1–14 (2016) [Google Scholar]
  26. M. J. Healey and B. W. Ilbery, Location and change: perspectives on economic geography. Oxford University Press (1990) [Google Scholar]
  27. R. M. Basse, H. Omrani, O. Charif, P. Gerber, and K. Bódis, “Land use changes modeling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale”, Applied Geography, vol. 53, pp. 160–171 (2014) [CrossRef] [Google Scholar]
  28. M. Djojodipuro, Teori Lokasi. Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia (1992) [Google Scholar]
  29. GlobalWebIndex, “Consumer Berhavior in Coronavirus Pandemic”, (2020) [Google Scholar]
  30. L. D. F. E. d. B. U. Indonesia, “Perilaku Baru Konsumen Indonesia dalam Bertransaksi Digital di Masa Pandemi COVID19 – Studi Kasus Gojek [Indonesian Consumers’ New Behavior in Digital Transactions During the COVID19 Pandemic Gojek Case Study]”, ed (2020) [Google Scholar]
  31. V. Chaudhary, R. Bhatia, and A. K. Ahlawat, “An efficient self-organizing map (E-SOM) learning algorithm using group of neurons”, International Journal of Computational Intelligence Systems, vol. 7, no. 5, pp. 963–972 (2014) [CrossRef] [Google Scholar]
  32. R. Wehrens and L. M. Buydens, “Self-and super-organizing maps in R: the Kohonen package”, Journal of Statistical Software, vol. 21, no. 5, pp. 1–19 (2007) [CrossRef] [Google Scholar]
  33. J. D. Gibbons and S. Chakraborti, Nonparametric Statistical Inference: Fourth Edition, Revised and Expanded (Statistics: A Dekker Series of Textbooks and Monographs). New York: Marcel Dekker, Inc (2003) [Google Scholar]
  34. J. D. Gibbons and S. Chakraborti, Nonparametric statistical inference. CRC Press (2020) [CrossRef] [Google Scholar]
  35. J. F. Healey, Statistics: A tool for social research. Cengage Learning (2014) [Google Scholar]
  36. M. Batty, “Virtual geography”, Futures, vol. 29, no. 4-5, pp. 337–352 (1997) [CrossRef] [Google Scholar]
  37. H. W. Aslesen, R. Martin, and S. Sardo, “The virtual is reality! On physical and virtual space in software firms’ knowledge formation”, Entrepreneurship & Regional Development, vol. 31, no. 9-10, pp. 669–682 (2019) [CrossRef] [Google Scholar]
  38. M. Crang, N. J. Thrift, and V.-C. N. Thrift, Thinking space. Psychology Press (2000) [Google Scholar]
  39. R. Patel and L. Nosal, “Defining the resilient city”, New York: United Nations University Centre for Policy Research (2016) [Google Scholar]
  40. D. R. Godschalk, “Urban hazard mitigation: creating resilient cities”, Natural hazards review, vol. 4, no. 3, pp. 136–143 (2003) [CrossRef] [Google Scholar]
  41. S. Meerow, J. P. Newell, and M. Stults, “Defining urban resilience: A review”, Landscape and urban planning, vol. 147, pp. 38–49 (2016) [CrossRef] [Google Scholar]
  42. ARUP and R. Foundation, “City resilience framework”, The Rockefeller Foundation and ARUP, vol. 928 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.