Open Access
Issue |
E3S Web Conf.
Volume 484, 2024
The 4th Faculty of Industrial Technology International Congress: Development of Multidisciplinary Science and Engineering for Enhancing Innovation and Reputation (FoITIC 2023)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 13 | |
Section | Information System And Technology Advancement | |
DOI | https://doi.org/10.1051/e3sconf/202448402004 | |
Published online | 07 February 2024 |
- F. Arina and M. Ulfah, “Analisa survival untuk mengurangi customer churn pada perusahaan telekomunikasi, ” J. Ind. Serv., vol. 8, no. 1, p. 59, 2022, doi: 10.36055/jiss.v8i1.14313. [Google Scholar]
- yohana T. Utami, D. A. Shofiana, and Y. Heningtyas, “Penerapan Algoritma C4.5 Untuk Prediksi Churn Rate Pengguna Jasa Telekomunikasi, ” J. Komputasi, vol. 8, no. 2, pp. 69–76, 2020, doi: 10.23960/komputasi.v8i2.2647. [Google Scholar]
- M. Claudia, H. U. Anisah, and R. Y. Prihatiningrum, “PKM peningkatan kemampuan ‘pemasaran online’ bagi komunitas perempuan di rumah kreatif Banjarmasin, ” Pros. Semin. Nas. Pengabdi. Kpd. Masy., vol. 1, no. April, pp. 86–93, 2019. [Google Scholar]
- N. W. Wardani, D. J. Arnidya, I. N. Agus, S. Putra, N. Made, and M. Rosa, “Prediksi Pelanggan Loyal Menggunakan Metode Naïve Bayes Berdasarkan Segmentasi Pelanggan dengan Pemodelan RFM, ” vol. 12, no. 2, pp. 113–124, 2022. [Google Scholar]
- E. Sutoyo and M. A. Fadlurrahman, “Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Television Advertisement Performance Rating Menggunakan Artificial Neural Network, ” J. Edukasi dan Penelit. Inform., vol. 6, no. 3, p. 379, 2020, doi: 10.26418/jp.v6i3.42896. [Google Scholar]
- A. Ishaq et al., “Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques, ” IEEE Access, vol. 9, pp. 39707–39716, 2021, doi: 10.1109/ACCESS.2021.3064084. [CrossRef] [Google Scholar]
- Y. E. Ardiningtyas, P. Heruningsih, and P. Rosa, “Analisis Balancing Data Untuk Meningkatkan Akurasi Dalam Klasifikasi, ” Pros. Semin. Nas. Apl. Sains Teknol. 2021, vol. 2021, no. Prosiding SNAST 2021, pp. A24–A28, 2021. [Google Scholar]
- R. A. Nurdian, Mujib Ridwan, and Ahmad Yusuf, “Komparasi Metode SMOTE dan ADASYN dalam Meningkatkan Performa Klasifikasi Herregistrasi Mahasiswa Baru, ” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, pp. 24–32, 2022, doi: 10.28932/jutisi.v8i1.4004. [Google Scholar]
- J. Hernandez, J. A. Carrasco-Ochoa, and J. F. Martínez-Trinidad, “An empirical study of oversampling and undersampling for instance selection methods on imbalance datasets, ” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8258 LNCS, no. PART 1, pp. 262–269, 2013, doi: 10.1007/978-3-642-41822-8_33. [Google Scholar]
- E. Prasetyo, Data Mining Konsep dan Aplikasi Menggunakan MATLAB. Yogyakarta: ANDI, 2012. [Google Scholar]
- N. Suryana, “Prediksi Churn Dan Segmentasi Pelanggan Tv Berlangganan (Studi Kasus Transvision Jawa Barat), ” vol. 11, no. 2, pp. 185–192, 2016. [Google Scholar]
- J. Zeniarja and A. Luthfiarta, “Prediksi Churn Dan Segmentasi Pelanggan Menggunakan Backpropagation Neural Network Berbasis Evolution Strategies, ” vol. 14, no. 1, pp. 49–54, 2015. [Google Scholar]
- G. Douzas, F. Bacao, and F. Last, “Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE, ” Inf. Sci. (Ny)., vol. 465, pp. 1–20, 2018, doi: 10.1016/j.ins.2018.06.056. [CrossRef] [Google Scholar]
- X. Y. Liu, J. Wu, and Z. H. Zhou, “Exploratory undersampling for class-imbalance learning, ” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 39, no. 2, pp. 539–550, 2009, doi: 10.1109/TSMCB.2008.2007853. [CrossRef] [PubMed] [Google Scholar]
- M. Rezki, D. N. Kholifah, M. Faisal, P. Priyono, and R. Suryadithia, “Analisis Review Pengguna Google Meet dan Zoom Cloud Meeting Menggunakan Algoritma Naïve Bayes, ” J. Infortech, vol. 2, no. 2, pp. 264–270, 2020, doi: 10.31294/infortech.v2i2.9286. [CrossRef] [Google Scholar]
- M. O. L. Ecular et al., “Perbandingan Analisis Klasifikasi antara Decision Tree dan Support Vector Machine Multiclass untuk Penentuan Jurusan pada Siswa SMA, ” J. Gaussian, vol. 4, no. 4, pp. 1007–1016, 2015. [Google Scholar]
- A. K. Ahmad, A. Jafar, and K. Aljoumaa, “Customer churn prediction in telecom using machine learning in big data platform, ” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0191-6. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.