Open Access
Issue
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
Article Number 02006
Number of page(s) 11
Section Wastewater and Resource Recovery
DOI https://doi.org/10.1051/e3sconf/202448502006
Published online 02 February 2024
  1. Kementrian Perindustrian, Mendorong Kinerja Industri Tekstil Dan Produk Tekstil Di Tengah Pandemi, Buku Analisis Pembangunan Industri. [Google Scholar]
  2. H. Patel and R. T. Vashi, Characterization of Textile Wastewater, in Characterization and Treatment of Textile Wastewater (Elsevier, 2015), pp. 21–71. [CrossRef] [Google Scholar]
  3. K. Rehman, T. Shahzad, A. Sahar, S. Hussain, F. Mahmood, M. H. Siddique, M. A. Siddique, and M. I. Rashid, Effect of Reactive Black 5 Azo Dye on Soil Processes Related to C and N Cycling, PeerJ 6, e4802 (2018). [CrossRef] [PubMed] [Google Scholar]
  4. I. C. Gonçalves, S. Penha, M. Matos, A. R. Santos, F. Franco, and H. M. Pinheiro, Evaluation of an Integrated Anaerobic/Aerobic SBR System for the Treatment of Wool Dyeing Effluents: Purification of Wool Dyeing Effluent in a SBR, Biodegradation 16, 81 (2005). [CrossRef] [PubMed] [Google Scholar]
  5. R. Ganesh, G. D. Boardman, and D. Michelsen, Fate of Azo Dyes in Sludges, Water Research. [Google Scholar]
  6. K. Sarayu and S. Sandhya, Current Technologies for Biological Treatment of Textile Wastewater-A Review, Applied Biochemistry and Biotechnology. [Google Scholar]
  7. S. C. Ameta and Rakshit. Ameta, Advanced Oxidation Processes for Wastewater Treatment, in Advanced Oxidation Processes for Waste Water Treatment (Elsevier, 2018), pp. 1–12. [Google Scholar]
  8. I. Arslan, Treatment of Reactive Dye-Bath Effluents by Heterogeneous and Homogenous Advanced Oxidation Processes, Bogaziçi, 2000. [Google Scholar]
  9. Y. Dadban Shahamat, M. Masihpour, P. Borghei, and S. Hoda Rahmati, Removal of Azo Red-60 Dye by Advanced Oxidation Process O3/UV from Textile Wastewaters Using Box-Behnken Design, Inorg Chem Commun 143, 109785 (2022). [CrossRef] [Google Scholar]
  10. S. Chakma, L. Das, and V. S. Moholkar, Dye Decolorization with Hybrid Advanced Oxidation Processes Comprising Sonolysis/Fenton-like/Photo-Ferrioxalate Systems: A Mechanistic Investigation, Sep Purif Technol 156, 596 (2015). [CrossRef] [Google Scholar]
  11. H. M. Solayman, Md. A. Hossen, A. Abd Aziz, N. Y. Yahya, K. H. Leong, L. C. Sim, M. U. Monir, and K.-D. Zoh, Performance Evaluation of Dye Wastewater Treatment Technologies: A Review, J Environ Chem Eng 11, 109610 (2023). [CrossRef] [Google Scholar]
  12. S. Adityosulindro, C. Julcour, D. Riboul, and L. Barthe, Degradation of Ibuprofen by Photo-Based Advanced Oxidation Processes: Exploring Methods of Activation and Related Reaction Routes, International Journal of Environmental Science and Technology 19, 3247 (2022). [CrossRef] [Google Scholar]
  13. G. A. Ismail and H. Sakai, Review on Effect of Different Type of Dyes on Advanced Oxidation Processes (AOPs) for Textile Color Removal, Chemosphere 291, 132906 (2022). [CrossRef] [PubMed] [Google Scholar]
  14. F. I. Hai, K. Yamamoto, and K. Fukushi, Hybrid Treatment Systems for Dye Wastewater, Crit Rev Environ Sci Technol 37, 315 (2007). [CrossRef] [Google Scholar]
  15. M. A. Oturan and J. J. Aaron, Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review, Critical Reviews in Environmental Science and Technology. [Google Scholar]
  16. H. Wang, S. Zhang, X. He, Y. Yang, X. Yang, and S. W. H. Van Hulle, Comparison of Macro and Micro-Pollutants Abatement from Biotreated Landfill Leachate by Single Ozonation, O3/H2O2, and Catalytic Ozonation Processes, Chemical Engineering Journal 452, 139503 (2023). [CrossRef] [Google Scholar]
  17. A. Ziylan and N. H. Ince, Catalytic Ozonation of Ibuprofen with Ultrasound and Fe-Based Catalysts, Catal Today 240, 2 (2015). [CrossRef] [Google Scholar]
  18. B. Kasprzyk-Hordern, M. Ziółek, and J. Nawrocki, Catalytic Ozonation and Methods of Enhancing Molecular Ozone Reactions in Water Treatment, Applied Catalysis B: Environmental. [Google Scholar]
  19. E. I. Yakupova, L. G. Bobyleva, I. M. Vikhlyantsev, and A. G. Bobylev, Congo Red and Amyloids: History and Relationship, Biosci Rep 39, (2019). [CrossRef] [Google Scholar]
  20. P. O. Oladoye, M. O. Bamigboye, O. D. Ogunbiyi, and M. T. Akano, Toxicity and Decontamination Strategies of Congo Red Dye, Groundwater for Sustainable Development. [Google Scholar]
  21. T. Tapalad, A. Neramittagapong, S. Neramittagapong, and M. Boonmee, Degradation of Congo Red Dye by Ozonation, Chiang Mai Journal of Science. [Google Scholar]
  22. S. Sundararaman, V. Kavitha, A. J. Mathew, and S. M. Seby, Performance Analysis of Heterogenous Catalyst Support for the Decolourisation of Azo Dye (Congo Red) by Advanced Oxidation Process, Biocatal Agric Biotechnol 15, 384 (2018). [CrossRef] [Google Scholar]
  23. P. K. Rai and P. Kumar, Role of Post-CCSD(T) Corrections in Predicting the Energetics and Kinetics of the OH˙ + O 3 Reaction, Physical Chemistry Chemical Physics 24, 13026 (2022). [CrossRef] [PubMed] [Google Scholar]
  24. S. Adityosulindro, A. Rahdhani, and D. M. Hartono, Heterogeneous Fenton Oxidation Catalysed by Rebar Flakes Waste for Removal of Methyl Orange in Water, Journal of Applied Science and Engineering 25, 481 (2021). [Google Scholar]
  25. J. Farkas, M. Náfrádi, T. Hlogyik, B. Cora Pravda, K. Schrantz, K. Hernádi, and T. Alapi, Comparison of Advanced Oxidation Processes in the Decomposition of Diuron and Monuron-Efficiency, Intermediates, Electrical Energy per Order and the Effect of Various Matrices, Environ Sci (Camb) 4, 1345 (2018). [Google Scholar]
  26. J. R. Bolton, K. G. Bircher, W. Tumas, and C. A. Tolman, Figures-Of-Merit For The Technical Development And Application Of Advanced Oxidation Technologies For Both Electric-And Solar-Driven Systems † (IUPAC Technical Report), 2001. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.