Open Access
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
Article Number 02007
Number of page(s) 10
Section Wastewater and Resource Recovery
Published online 02 February 2024
  1. D. Wen, R. Fu, Q. Li. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review. Journal of Hazardous Materials, 401(2021). [Google Scholar]
  2. R.Patowary, K. Patowary, M. C. Kalita, and S. Deka. Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil, International Biodeterioration and Biodegradation, 129, 50–60 (2018). [CrossRef] [Google Scholar]
  3. L. Cabral, P. Giovanella, E. P. Pellizzer, E. H. Teramoto, C. H. Kiang and L. D. Sette, Microbial communities in petroleum-contaminated sites: Structure and metabolisms, Chemosphere, 286 (2022). [Google Scholar]
  4. I. C. Ossai, A. Ahmed, A. Hassan, and F. S. Hamid, Remediation of soil and water contaminated with petroleum hydrocarbon: A review, Environmental Technology and Innovation, 17 (2020). [Google Scholar]
  5. AJ Effendi, T. Aminati. Enhancing bioremediation of crude oil contaminated soil by combining with photocatalytic process using TiO2 as catalyst, International Journal of GEOMATE, 17(64), 100–107. (2019). [CrossRef] [Google Scholar]
  6. F. Chen, X. Li, Q. Zhu, J. Ma, H. Hou, and S. Zhang. Bioremediation of petroleum-contaminated soil enhanced by aged refuse, Chemosphere, 222, 98–105 (2019). [CrossRef] [PubMed] [Google Scholar]
  7. S. Y Wang, Y. C. Kuo, A. Hong, Y. M. Chang, and C. M. Kao. Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system, Chemosphere, 164, 558–567 (2016). [CrossRef] [PubMed] [Google Scholar]
  8. E. Kardena, Y. Panha, Q.Helmy, and S. Hidayat. Application of mercury resistant bacteria isolated from artisanal small-scale gold tailings in biotransformation of mercury (II)-Contaminated soil, International Journal of GEOMATE, 19(71), 106–114. (2020) [CrossRef] [Google Scholar]
  9. B. S. Ramadan, G. L. Sari, R. T. Rosmalina, A. J. Effendi and Hadrah. An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil, Journal of Environmental Management, 218, 309–321. (2018). [CrossRef] [PubMed] [Google Scholar]
  10. S. Madonna, A. J. Effendi, and M. Mulyono. Bioremediasi Tanah Terkontaminasi H, Jurnal Biologi Lingkungan, 1(2), 78–88. (2007). [Google Scholar]
  11. A.T. Lima, A. Hofmann, D. Reynolds, C.J. Ptacek, P. Van Cappellen, L. M. Ottosen, S. Pamukcu, A. Alshawabekh, D. M. O’Carroll., C. Riis, Cox, E. Gent, D. B. Landis, R. Wang, J. Chowdhury, A. I. A. Secord, E. L. and Sanchez-Hachair, A. Environmental Electrokinetics for a sustainable subsurface, Chemosphere, 181, 122–133 (2017). [CrossRef] [PubMed] [Google Scholar]
  12. S. J Varjani and V. N Upasani. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants, International Biodeterioration and Biodegradation, 120, 71–83 (2017) [CrossRef] [Google Scholar]
  13. A. Saini, D. N. Bekele,S. Chadalavada, C. Fang, and R. Naidu. A review of electrokinetically enhanced bioremediation technologies for PHs, Journal of Environmental Sciences (China), 88, 31–45 (2020). [CrossRef] [PubMed] [Google Scholar]
  14. E. Mena, J. Villaseñor, M. A. Rodrigo and P. Cañizares. Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: Effect of periodic polarity reversal and voltage gradient, Chemical Engineering Journal, 299, 30–36 (2016). [CrossRef] [Google Scholar]
  15. A. Fdez-Sanromán, M. Pazos, E. Rosales, and M. Á. Sanromán. Prospects on integrated electrokinetic systems for decontamination of soil polluted with organic contaminants, Current Opinion in Electrochemistry, 27. (2021). [Google Scholar]
  16. B. Gidudu, and E. M. N. Chirwa. The combined application of a high voltage, low electrode spacing, and biosurfactants enhances the bio-electrokinetic remediation of petroleum contaminated soil, Journal of Cleaner Production, 276 (2020). [Google Scholar]
  17. B. Gidudu and E. M. N. Chirwa, Biosurfactants as demulsification enhancers in bio-electrokinetic remediation of petroleum contaminated soil, Process Safety and Environmental Protection, 143, 332–339. (2020). [CrossRef] [Google Scholar]
  18. I. M. V. Rocha, K. N. O Silva, D. R. Silva, C. A Martínez-Huitle and E. V. Santos. Coupling electrokinetic remediation with phytoremediation for depolluting soil with petroleum and the use of electrochemical technologies for treating the effluent generated. Separation and Purification Technology, 194–200 (2019). [Google Scholar]
  19. J. Ma, Q. Zhang, F. Chen, Q. Zhu, Y.Wang, and G. Liu, G. Remediation of resins-contaminated soil by the combination of electrokinetic bioremediation processes, Environmental Pollution, 260 (2020). [Google Scholar]
  20. M. Ajona, P. Vasanthi. Bio-remediation of crude oil contaminated soil using recombinant native microbial strain. Environmental Technology and Innovation, 23 (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.