Open Access
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
Article Number 02013
Number of page(s) 9
Section Wastewater and Resource Recovery
Published online 02 February 2024
  1. J. R. Cunha, C. Schott, R. D. van der Weijden, L. H. Leal, G. Zeeman, and C. Buisman, “Recovery of calcium phosphate granules from black water using a hybrid upflow anaerobic sludge bed and gas-lift reactor,” Environ. Res., vol. 178, no. March, p. 108671, (2019), doi: 10.1016/j.envres.2019.108671. [CrossRef] [Google Scholar]
  2. K. Meyer and P. Newman, Planetary Accounting. doi: 10.1007/978-981-15-1443-2, (2020) [Google Scholar]
  3. M. Pradel, M. Lippi, M. L. Daumer, and L. Aissani, “Environmental performances of production and land application of sludge-based phosphate fertilizers—a life cycle assessment case study,” Environ. Sci. Pollut. Res., vol. 2017, no. Usgs 2018, (2019), doi: 10.1007/s11356-019-06910-4. [Google Scholar]
  4. A. Witek-Krowiak, K. Gorazda, D. Szopa, K. Trzaska, K. Moustakas, K. Chojnacka, “Phosphorus recovery from wastewater and bio-based waste: an overview,” Bioengineered, vol. 13, no. 5, pp. 13474–13506, (2022), doi: 10.1080/21655979.2022.2077894. [CrossRef] [PubMed] [Google Scholar]
  5. Z. Yuan, S. Pratt, D. J. Batstone, “Phosphorus recovery from wastewater through microbial processes,” Curr. Opin. Biotechnol., vol. 23, no. 6, pp. 878–883, (2012), doi: 10.1016/j.copbio.2012.08.001. [CrossRef] [Google Scholar]
  6. R. I. Sedlak et al., Phosphorus and Nitrogen Removal from Municipal Wastewater Principles and Practice, 2nd ed. New York: The Soap and Detergent Association, (1991). [Google Scholar]
  7. Metcalf, G. Eddy, F. Tchobanoglous, H. D. S. Burton, R. Tsuchihashi, F. Burton, Wastewater Engineering Treatment and Reuse, 4th ed. New York: McGraw-Hill Education, (2014). [Google Scholar]
  8. Y. Pinatha, C. Polprasert, A. J. Englande, “Product and cost perspectives of phosphorus recovery from human urine using solid waste ash and sea salt addition – A case of Thailand,” Sci. Total Environ., vol. 713, p. 136514, 2020, doi: 10.1016/j.scitotenv.(2020).136514. [CrossRef] [Google Scholar]
  9. L. Deng, B. R. Dhar, “Phosphorus recovery from wastewater via calcium phosphate precipitation: A critical review of methods, progress, and insights,” Chemosphere, vol. 330, no. April, p. 138685, 2023, doi: 10.1016/j.chemosphere.(2023).138685. [CrossRef] [PubMed] [Google Scholar]
  10. K. Gorazda, B. Tarko, S. Werle, Z. Wzorek, “Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction,” Waste Manag., vol. 73, pp. 404–415, (2018), doi: 10.1016/j.wasman.2017.10.032. [CrossRef] [Google Scholar]
  11. A. Magri, M. Carreras-Sempere, C. Biel, J. Colprim, “Recovery of Phosphorus from Waste Water Profiting from Biological Nitrogen Treatment : Upstream, Concomitant or Downstream,” Agronomy, vol. 10, no. 1039, pp. 1–37, (2020). [Google Scholar]
  12. N. D. Maulidiany, “Phosphorus removal and potential recovery from wastewater using aerobic granular sludge,” University of Southampton, (2022). [Online]. Available: [Google Scholar]
  13. APHA/AWWA/WEF, “Standard Methods for the Examination of Water and Wastewater 23rd Ed.,” (2017) [Google Scholar]
  14. A. M. Rugaika, R. Van Deun, K. N. Njau, B. Van der Bruggen, “Phosphorus recovery as calcium phosphate by a pellet reactor pre-treating domestic wastewater before entering a constructed wetland,” Int. J. Environ. Sci. Technol., vol. 16, no. 7, pp. 3851–3860, (2019), doi: 10.1007/s13762-018-02179-1. [CrossRef] [Google Scholar]
  15. A. I. Mitsionis, T. C. Vaimakis, “A calorimetric study of the temperature effect on Calcium Phosphate precipitation,” J. Therm. Anal. Calorim., vol. 99, no. 3, pp. 785–789, (2010), doi: 10.1007/s10973-009-0357-0. [CrossRef] [Google Scholar]
  16. Y. Song, H. H. Hahn, E. Hoffmann, “Effects of solution conditions on the precipitation of phosphate for recovery: A thermodynamic evaluation,” Chemosphere, vol. 48, no. 10, pp. 1029–1034, (2002), doi: 10.1016/S0045-6535(02)00183-2. [CrossRef] [PubMed] [Google Scholar]
  17. G. A. Ekama, S. W. Sotemann, M. C. Wentzel, “Biodegradability of activated sludge organics under anaerobic conditions,” Water Res., vol. 41, pp. 244–252, (2007), doi: 10.1016/j.watres.2006.08.014. [CrossRef] [Google Scholar]
  18. S. Kratz, J. Schick, E. Schnug, “Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany,” Sci. Total Environ., vol. 542, pp. 1013–1019, (2016), doi: 10.1016/j.scitotenv.2015.08.046. [CrossRef] [Google Scholar]
  19. D. G. Westfall, J. J. Mortvedt, G. A. Peterson, W. J. Gangloff, “Efficient and environmentally safe use of micronutrients in agriculture,” Commun. Soil Sci. Plant Anal., vol. 36, no. 1–3, pp. 169–182, (2005), doi: 10.1081/CSS-200043024. [CrossRef] [Google Scholar]
  20. Y. Ye et al., “Insight into chemical phosphate recovery from municipal wastewater,” Sci. Total Environ., vol. 576, pp. 159–171, 2017, doi: 10.1016/j.scitotenv.(2016).10.078. [CrossRef] [Google Scholar]
  21. M. García-Albacete, A. Martín, M. C. Cartagena, “Fractionation of phosphorus biowastes: Characterisation and environmental risk,” Waste Manag., vol. 32, no. 6, pp. 1061–1068, (2012), doi: 10.1016/j.wasman.2012.02.003. [CrossRef] [Google Scholar]
  22. J. Liu et al., “Comparison of pretreatment methods for phosphorus release from waste activated sludge,” Chem. Eng. J., vol. 368, no. October (2018), pp. 754–763, 2019, doi: 10.1016/j.cej.2019.02.205. [CrossRef] [Google Scholar]
  23. Y. Xu, H. Hu, J. Liu, J. Luo, G. Qian, A. Wang, “PH dependent phosphorus release from waste activated sludge: Contributions of phosphorus speciation,” Chem. Eng. J., vol. 267, pp. 260–265, (2015), doi: 10.1016/j.cej.2015.01.037. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.