Open Access
Issue |
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 11 | |
Section | Environment Conservation, Restoration, Emergency and Rehabilitation | |
DOI | https://doi.org/10.1051/e3sconf/202448503009 | |
Published online | 02 February 2024 |
- H.B. Glasgow, J.M. Burkholder, R.E. Reed, A.J. Lewitus, J.E. Kleinman, Real-time remote monitoring of water quality: A review of current applications, and advancements in sensor, telemetry, and computing technologies. J. Exp. Mar. Biol. Ecol. 300, 409–448 (2004) [CrossRef] [Google Scholar]
- Y. Park, K.H. Cho, J. Park, S.M. Cha, J.H. Kim, Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Sci. Total Environ. 502, 31–41 (2015) [CrossRef] [Google Scholar]
- Md. Mamun, K. Jung-Jae, Md. Ashad Alam, A. Kwang-Guk, Prediction of Algal Chlorophyll-a and Water Clarity in Monsoon-Region Reservoir Using Machine Learning Approaches. Water 12, 1, 30 (2020) [Google Scholar]
- Y. Chebud, G. M. Naja, R. G. Rivero, A. M. Melesse, Water Quality Monitoring Using Remote Sensing and an Artificial Neural Network, Water, Air, & Soil Pollution, 223, 8, 4875–4887 (2012) [CrossRef] [Google Scholar]
- Y. Zhang, J. J. Huang, L. Chen, L. Qi, Eutrophication forecasting and management by artificial neural network: a case study at Yuqiao Reservoir in North China, Journal of Hydroinformatics, 17, 4, 679–695 (2015) [CrossRef] [Google Scholar]
- Z. Wu, Y. Zhang, Y. Zhou, M. Liu, K. Shi, Z. Yu, Seasonal-spatial distribution and long-term variation of transparency in xin’anjiang reservoir: Implications for reservoir management. Int. J. Environ. Res. Public Health, 12, 9492–9507 (2015) [CrossRef] [Google Scholar]
- F. Wang, X. Wang, B. Chen, Y. Zhao, Z. Yang, Chlorophyll a simulation in a lake ecosystem using a model with wavelet analysis and artificial neural network. Environ. Manag, 51, 1044–1054 (2013) [CrossRef] [PubMed] [Google Scholar]
- J.T. Kirk, Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, (2011). [Google Scholar]
- J. Karlsson, P. Byström, Light limitation of nutrient-poor lake ecosystems. Nature, 460, 506–509 (2009) [CrossRef] [PubMed] [Google Scholar]
- F. M. Breunig, W. P. Filho, L. S. Galvão and F. Wachholz, Assessing the Long-Term Variability of TSS and Chlorophyll in Subtropical Reservoirs Using MODIS Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 12, 5406-5412 (2016) [CrossRef] [Google Scholar]
- B.J. Hicks, G.A. Stichbury, L.K. Brabyn, et al. Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand. Environ Monit Assess 185, 7245–7261 (2013) [CrossRef] [PubMed] [Google Scholar]
- Z. Xie, I. Lou, W.K. Ung, K.M. Mok. Freshwater algal bloom prediction by support vector machine in macau storage reservoirs. Math. Probl. Eng. 2012, (2012) [Google Scholar]
- E. Riani, J. Sudarso, M. R. Cordova, Heavy metal effect on unviable larvae of dicrotendipes simpsoni (Diptera: Chironomidae), a case study from Saguling Dam, Indonesia. AACL BIOFLUX, 7(2), 76-84. (2014). [Google Scholar]
- E.S. Leggesse, F.A. Zimale, D. Sultan, T. Enku, R. Srinivasan, S.A. Tilahun, Predicting Optical Water Quality Indicators from Remote Sensing Using Machine Learning Algorithms in Tropical Highlands of Ethiopia. Hydrology, 10, 110. (2023) [CrossRef] [Google Scholar]
- L. Feng, X. Hou, Y. Zheng, Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations, Remote Sensing of Environment, 221, 675-686, (2019) [CrossRef] [Google Scholar]
- P. Brezonik, K. D. Menken, M. Bauer. Landsat-based Remote Sensing of Lake Water Quality Characteristics, Including Chlorophyll and Colored Dissolved Organic Matter (CDOM), Lake and Reservoir Management, 21, 4, 373-382 (2005) [CrossRef] [Google Scholar]
- F. Rustam, A. Ishaq, S.T. Kokab, I. de la Torre Diez, J.L.V. Mazón, C.L. Rodríguez, I. Ashraf, An Artificial Neural Network Model for Water Quality and Water Consumption Prediction. Water, 14, 3359 (2022) [CrossRef] [Google Scholar]
- M-C Tu, P. Smith, A.M. Filippi, Hybrid forward-selection method-based water-quality estimation via combining Landsat TM, ETM+, and OLI/TIRS images and ancillary environmental data. PLoS ONE 13, 7, (2018) [Google Scholar]
- E.V. Venitsianov, M.N. Skonechnii, Application of artificial neural networks in solving water management problems. IOP Conf. Ser. Earth Environ. Sci. 834 (2021) [Google Scholar]
- F. Xie, Z. Tao, X. Zhou, T. Lv, J. Wang, R. Li, A Prediction Model of Water in Situ Data Change under the Influence of Environmental Variables in Remote Sensing Validation. Remote Sens, 13, 70, (2021) [Google Scholar]
- USGS.2013. Landsat-8 Handbook Operation. Reston: USA [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.