Open Access
Issue
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
Article Number 04009
Number of page(s) 13
Section Water, Sanitation, and Hygiene (WASH)
DOI https://doi.org/10.1051/e3sconf/202448504009
Published online 02 February 2024
  1. Banten Province Environment and Forestry Service. Banten Province Environment and Forestry Service Nirwasita Tantra. P.20. (2020) [Google Scholar]
  2. A. Sabar. Directorate of Water and Irrigation. Global Trends in Sustainable Water Resources Infrastructure Development in the Context of Expert Discussion on the Formulation of Indonesia’s Eco-Efficient Water Infrastructure Policy. (2002). [Google Scholar]
  3. M. Marselina, A. Sabar, I. Rachmatiah Siti Salami., D. Marganingrum. Theoretical journal. Water Discharge Forecast Model in the Context of Optimizing the Management of the Saguling-Kaskade Citarum Reservoir, 24(1). (2017). [Google Scholar]
  4. Korean International Cooperation Agency (KOICA). Design report Korea Rural Community & Agriculture Corporation rgmain association with Korea Water Resources Corporation. Republic of Korea Korea International Cooperation Agency. Feasibility Study and Detailed Design of the Karian Dam Project. (2016) [Google Scholar]
  5. Bapennas Banten Province Regional. Bapennas Banten Province Regional Development Analysis Series. (2015) [Google Scholar]
  6. Directorate General of New, Renewable Energy and Energy Conservation, Ministry of Energy and Mineral Resources. New Renewable Energy Power Generation Capacity. (2021) [Google Scholar]
  7. PT PLN PERSERO. PT PLN (Persero) RUPTL Electricity Supply Business Plan 2021-2030. P45. (2021) [Google Scholar]
  8. M. Jayanti, A. Sabar, H. Dwi Ariesyady, M. Marselina, M. Qadafi. Water Cycle. A comparison of three water discharge forecasting models for monsoon climate region: A case study in cimanuk-jatigede watershed Indonesia. Volume 4, Pages 17-25. (2023) [Google Scholar]
  9. W. Wang, K. Chau, C. Cheng, L. Qiu. J. Hydrol. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. 374 (3–4), pp. 294-306. (2009) [Google Scholar]
  10. J. J. Musa. American Journal of Engineering Research (Ajer). Stochastic modelling of shiroro river stream flow process. pp. 49-54 (2013) [Google Scholar]
  11. M. Rezaeianzadeh, H. Tabari, A. Arabi Yazdi, S. Isik, L. Kalin. Neural Comput. Flood flow forecasting using ANN, ANFIS and regression models. Appl. 25, 25–37. (2014) [Google Scholar]
  12. A. Montanari. In Treatise on Water Science; Elsevier. Uncertainty of Hydrological Predictions. Berlin, Germany; Volume 2, pp. 459–478. (2011) [Google Scholar]
  13. Z.X Huang, X.P. Jin, China Waterpower Press. Basic hydrological Climate Prediction Theory and Application Technology; Beijing, China. (2005) [Google Scholar]
  14. P. Supriya, M. Krishnaveni, M. Subbulakshmi. Aquat. Procedia. Regression Analysis of Annual Maximum Daily Rainfall and Stream Flow for Flood Forecasting in Vellar River Basin., 4, 957–963. (2015) [Google Scholar]
  15. The Ciujung-Cidurian Cidanau area river office (BBWSC-3). Hidrology Data. (2021) [Google Scholar]
  16. J. Saade, M. Atieh, S. Ghanimeh, G. Golmohammadi. Hydrology. Modeling impact of climate change on surface water availability using swat model in a semi-arid basin: case of el kalb river, Lebanon. 8 (3) (2021), pp. 1-14. (2021) [Google Scholar]
  17. M. Marselina, Arwin, I.R.S. Salami, D. Marganingrum. Forum Geografi. Management optimization of saguling Reservoir with bellman dynamic programming and “du couloir” iterative method, 30, p. 14. (2016) [Google Scholar]
  18. H.V. Gupta, H. Kling, K.K. Yilmaz, G.F. Martinez. J. Hydrol.Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. 377 (1–2) pp. 80-91. (2009) [Google Scholar]
  19. T.Allen Hjelmfelt Jr.Water Resources Bulletin. Fractals And the River-Length Catchment-Area Ratio. No. 87103 of the Water Resources Bulletin. (1988) [Google Scholar]
  20. C.-Min Song. Sustainability. Analysis of the effects of local regulations on the preservation of water resources using the Ca-markov model. 13 (10) (2021) [Google Scholar]
  21. J. Strömqvist. B. Arheimer, J. Dahné, C. Donnelly, G. Lindström. Hydrological Sciences Journal. Water and nutrient predictions in ungauged basins: set-up and evaluation of a model at the national scale. 57 (2), 229–247. (2011) [Google Scholar]
  22. M. Ghoraba, Shimaa. Alex. Eng. J. Hydrological modeling of the simply dam watershed (Pakistan) using GIS and SWAT model. 54, pp. 583-594, (2015) [Google Scholar]
  23. P.T. Juwono, L.M. Limantara. J. Hunan Univ. Water availability modelling for supplying domestic demand. 48, p. 10. (2021) [Google Scholar]
  24. K. Tsakiri, A. Marsellos, S. Kapetanakis. Water. Artificial Neural Network and Multiple Linear Regression for Flood Prediction in Mohawk River, New York. 10(9), 1158. (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.