Open Access
Issue
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
Article Number 07009
Number of page(s) 26
Section Healthy, Safe, and Resilient Community
DOI https://doi.org/10.1051/e3sconf/202448507009
Published online 02 February 2024
  1. K. A. Lewis, J. Tzilivakis, D. J. Warner, and A. Green, “An international database for pesticide risk assessments and management,” Human and Ecological Risk Assessment, vol. 22, no. 4, pp. 1050–1064, 2016, doi: 10.1080/10807039.2015.1133242. [CrossRef] [Google Scholar]
  2. F. P. Carvalho, “Pesticides, environment, and food safety,” Food Energy Secur, vol. 6, no. 2, pp. 48–60, 2017, doi: 10.1002/fes3.108. [CrossRef] [Google Scholar]
  3. D. Pimentel, “Amounts of pesticides reaching target pests: Environmental impacts and ethics,” Journal of Agricultural and Environmental Ethics 1995 8:1, vol. 8, no. 1, pp. 17–29, Mar. 1995, doi: 10.1007/BF02286399. [Google Scholar]
  4. J. A. Noone, “Pesticides’ Impact on Food Production and Consumption,” National Agricultural Chemicals Association, Washington, D. C. HE, vol. 6, 1958. [Google Scholar]
  5. H. M. G. van der Werf, “Assessing the impact of pesticides on the environment,” vol. 60, pp. 81–96, 1996. [Google Scholar]
  6. Y. Farina, N. Munawar, M. P. Abdullah, M. Yaqoob, and A. Nabi, “Fate, distribution, and bioconcentration of pesticides impact on the organic farms of Cameron Highlands, Malaysia,” Environ Monit Assess, vol. 190, no. 7, 2018, doi: 10.1007/s10661-018-6762-8. [CrossRef] [Google Scholar]
  7. L. Vera-Herrera, D. Sadutto, and Y. Picó, “Non-Occupational Exposure to Pesticides: Experimental Approaches and Analytical Techniques (from 2019),” Molecules (Basel, Switzerland), vol. 26, no. 12. 2021. doi: 10.3390/molecules26123688. [CrossRef] [PubMed] [Google Scholar]
  8. F. de A. Nascimento, D. de M. e. Silva, T. M. A. Pedroso, J. S. A. Ramos, and M. R. Parise, “Farmers exposed to pesticides have almost five times more DNA damage: a meta-analysis study,” Environmental Science and Pollution Research, 2021, doi: 10.1007/s11356-021-15573-z. [Google Scholar]
  9. V. Dhananjayan and B. Ravichandran, “Occupational health risk of farmers exposed to pesticides in agricultural activities,” Curr Opin Environ Sci Health, vol. 4, pp. 31–37, 2018, doi: 10.1016/j.coesh.2018.07.005. [CrossRef] [Google Scholar]
  10. N. Mohammad, E. Z. Abidin, V. How, S. M. Praveena, and Z. Hashim, “Pesticide management approach towards protecting the safety and health of farmers in Southeast Asia,” Rev Environ Health, vol. 33, no. 2, pp. 123–134, 2018, doi: 10.1515/reveh-2017-0019. [CrossRef] [PubMed] [Google Scholar]
  11. A. Sudaryanto, S. Takahashi, and S. Tanabe, “Chapter 13 Persistent Toxic Substances in the Environment of Indonesia,” Developments in Environmental Science, vol. 7, no. 07, pp. 587–627, 2007, doi: 10.1016/S1474-8177(07)07013-1. [CrossRef] [Google Scholar]
  12. A. F. Marcelino, C. C. Wachtel, and N. de C. Ghisi, “Are our farm workers in danger? Genetic damage in farmers exposed to pesticides,” Int J Environ Res Public Health, vol. 16, no. 3, Feb. 2019, doi: 10.3390/ijerph16030358. [CrossRef] [PubMed] [Google Scholar]
  13. E. L. Mahyuni, R. Hamdani Harahap, U. Harahap, and Nurmaini, “Determinants of unsafe behavior in pesticide usage among horticulture farmer,” Open Access Maced J Med Sci, vol. 8, no. E, pp. 341–346, 2020, doi: 10.3889/oamjms.2020.4210. [CrossRef] [Google Scholar]
  14. B. Piet, A. Kekalih, and M. Ikhsan, “Profil Perilaku Petani Hortikultura Penyemprot Pestisida dan Gangguan Fungsi Paru Obstruktif,” J Respir Indo, vol. 37, no. 3, 2017. [Google Scholar]
  15. N. López-Gálvez et al., “Take-home route of pesticide exposure,” Encyclopedia of Environmental Health, vol. 6, no. January 2018, pp. 11–25, 2019, doi: 10.1016/B978-0-12-409548-9.11052-8. [CrossRef] [Google Scholar]
  16. J. R. Suarez-Lopez, C. R. Butcher, S. Gahagan, H. Checkoway, B. H. Alexander, and W. K. Al-Delaimy, “Acetylcholinesterase activity and time after a peak pesticide-use period among Ecuadorian children,” Int Arch Occup Environ Health, vol. 91, no. 2, pp. 175–184, 2018, doi: 10.1007/s00420-017-1265-4. [CrossRef] [PubMed] [Google Scholar]
  17. H. Frumkin, Healthy Environments for Healthy Children: Global Program Framework. 2021. doi: 10.4135/9781848607873.n25. [Google Scholar]
  18. T. For and T. H. E. Health, “Children’s Health and the Environment”. [Google Scholar]
  19. P. Deki, “Factors Affecting Early Childhood Growth and Development: Golden 1000 Days,” Journal of Advanced Practices in Nursing, vol. 01, no. 01, pp. 1–4, 2016, doi: 10.4172/2573-0347.1000101. [Google Scholar]
  20. Dilip R. Patel, “Neurodevelopmental and neurobehavioral disorders,” Transl Pediatr, vol. 9, 2020, doi: 10.21037/tp.2020.02.03. [Google Scholar]
  21. M. A. Furlong et al., “Prenatal exposure to organophosphorus pesticides and childhood neurodevelopmental phenotypes,” Environ Res, vol. 158, no. July, pp. 737–747, 2017, doi: 10.1016/j.envres.2017.07.023. [CrossRef] [PubMed] [Google Scholar]
  22. B. Bennett, T. Workman, M. N. Smith, W. C. Griffith, B. Thompson, and E. M. Faustman, “Characterizing the neurodevelopmental pesticide exposome in a children’s agricultural cohort,” Int J Environ Res Public Health, vol. 17, no. 5, 2020, doi: 10.3390/ijerph17051479. [CrossRef] [PubMed] [Google Scholar]
  23. A. Vester and W. M. Caudle, “The synapse as a central target for neurodevelopmental susceptibility to pesticides,” Toxics, vol. 4, no. 3, 2016, doi: 10.3390/toxics4030018. [CrossRef] [PubMed] [Google Scholar]
  24. J. R. Suarez-Lopez, J. H. Himes, D. R. Jacobs, B. H. Alexander, and M. R. Gunnar, “Acetylcholinesterase activity and neurodevelopment in boys and girls,” Pediatrics, vol. 132, no. 6, Dec. 2013, doi: 10.1542/PEDS.2013-0108. [Google Scholar]
  25. J. F. Shelton et al., “Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: The CHARGE study,” Everyday Environmental Toxins: Childrens Exposure Risks, vol. 122, no. 10, pp. 183–200, 2015, doi: 10.1201/b18221. [CrossRef] [Google Scholar]
  26. B. Eskenazi et al., “Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children,” Environ Health Perspect, vol. 115, no. 5, pp. 792–798, 2007, doi: 10.1289/ehp.9828. [CrossRef] [PubMed] [Google Scholar]
  27. M. Saunders et al., “Chlorpyrifos and neurodevelopmental effects: A literature review and expert elicitation on research and policy,” Environ Health, vol. 11, no. SUPPL.1, pp. 1–11, 2012, doi: 10.1186/1476-069X-11-S1-S5. [CrossRef] [PubMed] [Google Scholar]
  28. S. L. Schantz et al., “A framework for assessing the impact of chemical exposures on neurodevelopment in ECHO: Opportunities and challenges,” Environ Res, vol. 188, 2020, doi: 10.1016/j.envres.2020.109709. [CrossRef] [PubMed] [Google Scholar]
  29. R. A. Fenske et al., “Strategies for assessing children’s organophosphorus pesticide exposures in agricultural communities,” J Expo Anal Environ Epidemiol, vol. 10, no. 6 II SUPPL., pp. 662–671, 2000, doi: 10.1038/sj.jea.7500116. [CrossRef] [Google Scholar]
  30. T. A. Arcury et al., “Pesticide exposure among Latinx children: Comparison of children in rural, farmworker and urban, non-farmworker communities,” Science of the Total Environment, vol. 763, 2021, doi: 10.1016/j.scitotenv.2020.144233. [CrossRef] [Google Scholar]
  31. A. Rauber, “Growth and development,” in A Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd Editio., Boston: Butterworths, 2006, pp. 13–24. doi: 10.5810/kentucky/9780813125237.003.0006. [Google Scholar]
  32. S. Grantham-McGregor, Y. B. Cheung, S. Cueto, P. Glewwe, L. Richter, and B. Strupp, “Developmental potential in the first 5 years for children in developing countries,” Lancet, vol. 369, no. 9555, pp. 60–70, 2007, doi: 10.1016/S0140-6736(07)60032-4. [CrossRef] [PubMed] [Google Scholar]
  33. R. Sapbamrer, S. Hongsibsong, N. Sittitoon, and P. Amput, “DNA damage and adverse neurological outcomes among garlic farmers exposed to organophosphate pesticides,” Environ Toxicol Pharmacol, vol. 72, 2019, doi: 10.1016/j.etap.2019.103241. [CrossRef] [PubMed] [Google Scholar]
  34. K. J. Petrie, E. A. Broadbent, N. Kley, R. Moss-Morris, R. Horne, and W. Rief, “Worries about modernity predict symptom complaints after environmental pesticide spraying,” Psychosom Med, vol. 67, no. 5, pp. 778–782, 2005, doi: 10.1097/01.psy.0000181277.48575.a4. [CrossRef] [PubMed] [Google Scholar]
  35. P. M. Rodier, “Developing brain as a target of toxicity,” Environ Health Perspect, vol. 103, no. SUPPL. 6, pp. 73–76, 1995, doi: 10.1289/ehp.95103s673. [Google Scholar]
  36. S. Chen et al., “Exposure to pyrethroid pesticides and the risk of childhood brain tumors in East China,” Environmental Pollution, vol. 218, pp. 1128–1134, 2016, doi: 10.1016/j.envpol.2016.08.066. [CrossRef] [Google Scholar]
  37. T. Schettler, “Toxic threats to Neurologic development of children.” 2001. [Google Scholar]
  38. P. Ntantu Nkinsa et al., “Organophosphate pesticides exposure during fetal development and IQ scores in 3 and 4-year old Canadian children,” Environ Res, vol. 190, no. August, p. 110023, 2020, doi: 10.1016/j.envres.2020.110023. [CrossRef] [PubMed] [Google Scholar]
  39. D. L. Dobbins et al., “Comparing impact of pesticide exposure on cognitive abilities of Latinx children from rural farmworker and urban non-farmworker families in North Carolina.,” Neurotoxicol Teratol, vol. 92, no. May, p. 107106, 2022, doi: 10.1016/j.ntt.2022.107106. [CrossRef] [PubMed] [Google Scholar]
  40. M. Bjorling-Poulsen, H. R. Andersen, and P. Grandjean, “Potential Developmental neurotoxicity of pesticides used in Europe.” [Google Scholar]
  41. B. González-Alzaga et al., “Pre- and postnatal exposures to pesticides and neurodevelopmental effects in children living in agricultural communities from South-Eastern Spain,” Environ Int, vol. 85, pp. 229–237, 2015, doi: 10.1016/j.envint.2015.09.019. [CrossRef] [PubMed] [Google Scholar]
  42. Y. Wang et al., “Prenatal and postnatal exposure to organophosphate pesticides and childhood neurodevelopment in Shandong, China,” Environ Int, vol. 108, no. July, pp. 119–126, 2017, doi: 10.1016/j.envint.2017.08.010. [CrossRef] [PubMed] [Google Scholar]
  43. E. A. Guillette, M. M. Meza, M. G. Aquilar, A. D. Soto, and I. E. Garcia, “An anthropological approach to the evaluation of preschool children exposed to pesticides in Mexico,” Environ Health Perspect, vol. 106, no. 6, pp. 347–353, 1998, doi: 10.1289/ehp.98106347. [CrossRef] [PubMed] [Google Scholar]
  44. A. L. Duckworth, “Intelligence is not enough: Non -IQ predictors of achievement,” Dissertations available from ProQuest, Jan. 2006. [Google Scholar]
  45. M. Balter, “What Does IQ Really Measure? | Science | AAAS.” Accessed: Oct. 14, 2022. [Online]. Available: https://www.science.org/content/article/what-does-iq-really-measure [Google Scholar]
  46. T. J. Legg, “Average IQ: US, Globally, How It’s Measured, and Controversies.” Accessed: Nov. 23, 2021. [Online]. Available: https://www.healthline.com/health/average-iq#takeaway [Google Scholar]
  47. P. Ntantu Nkinsa et al., “Organophosphate pesticides exposure during fetal development and IQ scores in 3 and 4-year old Canadian children,” Environ Res, vol. 190, no. August, p. 110023, 2020, doi: 10.1016/j.envres.2020.110023. [CrossRef] [PubMed] [Google Scholar]
  48. G. Kalloo et al., “Chemical mixture exposures during pregnancy and cognitive abilities in school-aged children,” Environ Res, vol. 197, 2021, doi: 10.1016/j.envres.2021.111027. [CrossRef] [PubMed] [Google Scholar]
  49. C. Espinosa da Silva, S. Gahagan, J. Suarez-Torres, D. Lopez-Paredes, H. Checkoway, and J. R. Suarez-Lopez, “Time after a peak-pesticide use period and neurobehavior among Ecuadorian children and adolescents: The ESPINA study,” Environ Res, vol. 204, no. Pt C, Mar. 2022, doi: 10.1016/J.ENVRES.2021.112325. [CrossRef] [PubMed] [Google Scholar]
  50. R. Paudel, B. Pradhan, and W. RR, “Risk Factor for stunting among children: a community based Case Control Study in Nepal.” 2012. [Google Scholar]
  51. UNICEF, “Understanding Pesticide Effect on Children: A Discussion paper,” 2018. [Google Scholar]
  52. N. B. Scott and N. S. Pocock, “The health impacts of hazardous chemical exposures among child labourers in low-and middle-income countries,” Int J Environ Res Public Health, vol. 18, no. 10, 2021, doi: 10.3390/ijerph18105496. [Google Scholar]
  53. A. Kartini, H. W. Subagio, S. Hadisaputro, M. I. Kartasurya, S. Suhartono, and B. Budiyono, “Pesticide Exposure and Stunting among Children in Agricultural Areas,” Int J Occup Environ Med, vol. 10, pp. 17–29, 2019, doi: 10.15171/ijoem.2019.1428. [CrossRef] [PubMed] [Google Scholar]
  54. L. Barelli et al., World Health Statistics: Monitoring Health for the SDGs, vol. 6, no. 1. 2018. [Google Scholar]
  55. A. Senthilselvan, H. H. McDuffie, and J. A. Dosman, “Association of asthma with use of pesticides: Results of a cross-sectional survey of farmers,” American Review of Respiratory Disease, vol. 146, no. 4, pp. 884–887, 1992, doi: 10.1164/ajrccm/146.4.884. [CrossRef] [PubMed] [Google Scholar]
  56. V. A. Redwar, “Identifikasi dan Distribusi Penggunaan Pestsidak Organoklorin pada Campuran Pestsisida di DAS Citarum Hulu,” Institut Teknologi Bandung, 2012. [Google Scholar]
  57. R. H. Pradama, “Analisis dan Pemetaan Kandungan pestisida Organofosfat pada sampel cairan Penyemprot,” 2012. [Google Scholar]
  58. P. El Najjar et al., “High-frequency monitoring of surface water quality at the outlet of the Ibrahim River (Lebanon): A multivariate assessment,” Ecol Indic, vol. 104, pp. 13–23, 2019, doi: 10.1016/j.ecolind.2019.04.061. [CrossRef] [Google Scholar]
  59. M. I. Polkey and J. Moxham, “Respiratory symptoms in children and exposure to pesticides,” European Respiratory Journal, vol. 23, no. 1, pp. 5–6, 2004, doi: 10.1183/09031936.03.00107403. [CrossRef] [PubMed] [Google Scholar]
  60. W. Benka-Coker, C. Loftus, C. Karr, and S. Magzamen, “Association of Organophosphate Pesticide Exposure and a Marker of Asthma Morbidity in an Agricultural Community,” J Agromedicine, vol. 25, no. 1, pp. 106–114, 2020, doi: 10.1080/1059924X.2019.1619644. [CrossRef] [PubMed] [Google Scholar]
  61. C. Raherison et al., “Pesticides Exposure by Air in Vineyard Rural Area and Respiratory Health in Children: A pilot study,” Environ Res, vol. 169, no. October 2018, pp. 189–195, 2019, doi: 10.1016/j.envres.2018.11.002. [CrossRef] [PubMed] [Google Scholar]
  62. A. M. Mora et al., “Prenatal pesticide exposure and respiratory health outcomes in the first year of life: Results from the infants’ Environmental Health (ISA) study,” Int J Hyg Environ Health, vol. 225, no. January, p. 113474, 2020, doi: 10.1016/j.ijheh.2020.113474. [CrossRef] [PubMed] [Google Scholar]
  63. X. Xu, W. N. Nembhard, H. Kan, A. Becker, and E. O. Talbott, “Residential pesticide use is associated with children’s respiratory symptoms,” J Occup Environ Med, vol. 54, no. 10, pp. 1281–1287, 2012, doi: 10.1097/JOM.0b013e31825cb6ae. [CrossRef] [PubMed] [Google Scholar]
  64. S. Singh et al., “DNA damage and cholinesterase activity in occupational workers exposed to pesticides,” Environ Toxicol Pharmacol, vol. 31, no. 2, pp. 278–285, Mar. 2011, doi: 10.1016/J.ETAP.2010.11.005. [CrossRef] [PubMed] [Google Scholar]
  65. L. Kapka-Skrzypczak et al., “Assessment of DNA damage in Polish children environmentally exposed to pesticides,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 843, pp. 52–56, Jul. 2019, doi: 10.1016/J.MRGENTOX.2018.12.012. [CrossRef] [Google Scholar]
  66. S. Leite et al., “DNA damage induced by exposure to pesticides in children of rural areas in Paraguay,” Indian Journal of Medical Research, vol. 150, no. 3, pp. 290–296, 2019, doi: 10.4103/ijmr.IJMR_1497_17. [CrossRef] [PubMed] [Google Scholar]
  67. C. Lu, C. M. Holbrook, and L. M. Andres, “The implications of using a physiologically based pharmacokinetic (PBPK) model for pesticide risk assessment,” Environ Health Perspect, vol. 118, no. 1, pp. 125–130, 2010, doi: 10.1289/ehp.0901144. [CrossRef] [PubMed] [Google Scholar]
  68. N. H. Lameire et al., “Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference,” Kidney Int, vol. 100, no. 3, pp. 516–526, 2021, doi: 10.1016/j.kint.2021.06.028. [CrossRef] [PubMed] [Google Scholar]
  69. D. A. Ferenbach and J. V. Bonventre, “Acute kidney injury and chronic kidney disease: From the laboratory to the clinic,” Nephrologie et Therapeutique, vol. 12, pp. S41–S48, 2016, doi: 10.1016/j.nephro.2016.02.005. [Google Scholar]
  70. L. S. Chawla et al., “Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup,” Nature Reviews Nephrology, vol. 13, no. 4. pp. 241–257, 2017. doi: 10.1038/nrneph.2017.2. [CrossRef] [PubMed] [Google Scholar]
  71. J. F. Lebov, L. S. Engel, D. Richardson, S. L. Hogan, D. P. Sandler, and J. A. Hoppin, “Pesticide exposure and end-stage renal disease risk among wives of pesticide applicators in the Agricultural Health Study,” Environ Res, vol. 143, pp. 198–210, 2015, doi: 10.1016/j.envres.2015.10.002. [CrossRef] [PubMed] [Google Scholar]
  72. S. Literatur, P. Pestisida, and D. A. N. Kejadian, “Study Literature : Exposure to Pesticides and Incidence,” vol. 13, no. 1, pp. 29–39, 2021. [Google Scholar]
  73. B. A. Othman and E. S. Kakey, “Environmental pesticide residues and health biomarkers among farmers from greenhouses of erbil cucumber crops,” Plant Arch, vol. 20, no. 1, pp. 2161–2169, 2020. [Google Scholar]
  74. J. J. Shearer et al., “Pesticide use and kidney function among farmers in the Biomarkers of Exposure and Effect in Agriculture study,” Environ Res, vol. 199, p. 111276, Aug. 2021, doi: 10.1016/j.envres.2021.111276. [CrossRef] [PubMed] [Google Scholar]
  75. E. L. Hidayati, “Gangguan ginjal pada anak,” Clin J Am Soc Nephrol, no. November. pp. 1482–93, 2018. [Google Scholar]
  76. M. H. Jacobson et al., “Organophosphate pesticides and progression of chronic kidney disease among children: A prospective cohort study,” Environ Int, vol. 155, 2021, doi: 10.1016/j.envint.2021.106597. [CrossRef] [PubMed] [Google Scholar]
  77. E. Indriani, R. Amalia, and J. Levita, “Peran dan Metode Pengukuran Protein Kidney Injury Molecule-1 (Kim-1) sebagai Biomarker pada Cedera Ginjal Akut,” Jurnal Sains Farmasi & Klinis, vol. 8, no. 2, p. 93, 2021, doi: 10.25077/jsfk.8.2.93-106.2021. [CrossRef] [Google Scholar]
  78. S. Tual, B. Clin, N. Levêque-Morlais, C. Raherison, I. Baldi, and P. Lebailly, “Agricultural exposures and chronic bronchitis: Findings from the AGRICAN (AGRIculture and CANcer) cohort,” Ann Epidemiol, vol. 23, no. 9, pp. 539–545, 2013, doi: 10.1016/j.annepidem.2013.06.005. [CrossRef] [PubMed] [Google Scholar]
  79. A. Coste, H. D. Bailey, M. Kartal-Kaess, R. Renella, A. Berthet, and B. D. Spycher, “Parental occupational exposure to pesticides and risk of childhood cancer in Switzerland: A census-based cohort study,” BMC Cancer, vol. 20, no. 1. 2020. doi: 10.1186/s12885-020-07319-w. [CrossRef] [Google Scholar]
  80. K.-C. Nordby, A. Andersen, L. M. Irgens, and P. Kristensen, “Indicators of mancozeb exposure in relation to thyroid cancer and neural tube defects in farmers’ families,” Scand J Work Environ Health, vol. 31, no. 2, pp. 89–96, 2005, doi: 10.5271/sjweh.855. [CrossRef] [PubMed] [Google Scholar]
  81. A. Coste, S. Goujon, L. Faure, D. Hémon, and J. Clavel, “Agricultural crop density in the municipalities of France and incidence of childhood leukemia: An ecological study,” Environ Res, vol. 187, no. April, p. 109517, 2020, doi: 10.1016/j.envres.2020.109517. [CrossRef] [PubMed] [Google Scholar]
  82. A. S. Park, B. Ritz, F. Yu, M. Cockburn, and J. E. Heck, “Prenatal pesticide exposure and childhood leukemia – A California statewide case-control study,” Int J Hyg Environ Health, vol. 226, no. January, p. 113486, 2020, doi: 10.1016/j.ijheh.2020.113486. [CrossRef] [PubMed] [Google Scholar]
  83. R. B. Gunier et al., “A task-based assessment of parental occupational exposure to pesticides and childhood acute lymphoblastic leukemia,” Environ Res, vol. 156, no. February, pp. 57–62, 2017, doi: 10.1016/j.envres.2017.03.001. [CrossRef] [PubMed] [Google Scholar]
  84. K.-C. Nordby, A. Andersen, L. M. Irgens, and P. Kristensen, “Indicators of mancozeb exposure in relation to thyroid cancer and neural tube defects in farmers’ families,” Scand J Work Environ Health, vol. 31, no. 2, pp. 89–96, 2005, doi: 10.5271/sjweh.855. [CrossRef] [PubMed] [Google Scholar]
  85. B. Dinham, “Prolonged exposure to some agricultural pesticides may increase the risk of lung cancer in agricultural workers,” Evidence-Based Healthcare and Public Health, vol. 9, no. 3, pp. 203–205, 2005, doi: 10.1016/j.ehbc.2005.03.029. [CrossRef] [Google Scholar]
  86. L. Kachuri, M. A. Harris, J. S. MacLeod, M. Tjepkema, P. A. Peters, and P. A. Demers, “Cancer risks in a population-based study of 70,570 agricultural workers: Results from the Canadian census health and Environment cohort (CanCHEC),” BMC Cancer, vol. 17, no. 1, 2017, doi: 10.1186/s12885-017-3346-x. [CrossRef] [Google Scholar]
  87. G. Kaur, B. V. S. Kumar, B. Singh, and R. S. Sethi, “Exposures to 2,4-Dichlorophenoxyacetic acid with or without endotoxin upregulate small cell lung cancer pathway,” Journal of Occupational Medicine and Toxicology, vol. 16, no. 1, 2021, doi: 10.1186/s12995-021-00304-4. [Google Scholar]
  88. L. S. Engel et al., “Insecticide use and breast cancer risk among farmers’ wives in the agricultural health study,” Environ Health Perspect, vol. 125, no. 9, 2017, doi: 10.1289/EHP1295. [CrossRef] [Google Scholar]
  89. Y. Deng et al., “Knowledge and behavior regarding pesticide use: a survey among caregivers of children aged 1–6 years from rural China,” Environmental Science and Pollution Research, vol. 26, no. 22. pp. 23037–23043, 2019. doi: 10.1007/s11356-019-05560-w. [CrossRef] [PubMed] [Google Scholar]
  90. J. R. Suarez-Lopez, J. H. Himes, D. R. Jacobs, B. H. Alexander, and M. R. Gunnar, “Acetylcholinesterase activity and neurodevelopment in boys and girls,” Pediatrics, vol. 132, no. 6, Dec. 2013, doi: 10.1542/PEDS.2013-0108. [Google Scholar]
  91. L. Maitre et al., “Early-life environmental exposure determinants of child behavior in Europe: A longitudinal, population-based study,” Environ Int, vol. 153, 2021, doi: 10.1016/j.envint.2021.106523. [CrossRef] [PubMed] [Google Scholar]
  92. A. Marwanto, O. Setiani, and S. Suhartono, “Hubungan Pajanan Pestisida dengan Kejadian Goiter pada Anak Usia Sekolah Dasar di Area Pertanian Hortikultura Kecamatan Ngablak Kabupaten Magelang,” Jurnal Kesehatan Lingkungan Indonesia, vol. 17, no. 2, p. 104, 2018, doi: 10.14710/jkli.17.2.104-111. [CrossRef] [Google Scholar]
  93. J. C. J. Ribeiro, L. C. De Gusmão, and M. M. Custódio, “Food safety and pesticides: The situation of glyphosate before the Precautionary Principle | Segurança alimentar e agrotóxicos: a situação do glifosato perante o princípio da precaução,” Veredas do Direito, vol. 15, no. 31, pp. 95–125, 2018, doi: 10.18623/rvd.v15i31.1275. [Google Scholar]
  94. S. Noegrohati, S. Sulasmi, E. Hernadi, and S. Asviastuti, “Dissipation pattern of azoxystrobin and difenoconazole in red dragon fruit (Hylocereus polyrhizus) cultivated in indonesian highland (West Java) and coastal area (D.I. Jogyakarta) and its implication for dietary risk assessment,” Food Quality and Safety, vol. 3, no. 2, pp. 99–106, 2019, doi: 10.1093/fqsafe/fyz009. [CrossRef] [Google Scholar]
  95. L. M. Chiesa et al., “The occurrence of pesticides and persistent organic pollutants in Italian organic honeys from different productive areas in relation to potential environmental pollution,” Chemosphere, vol. 154, pp. 482–490, Jul. 2016, doi: 10.1016/J.CHEMOSPHERE.2016.04.004. [CrossRef] [PubMed] [Google Scholar]
  96. E. Coker et al., “Association between pesticide profiles used on agricultural fields near maternal residences during pregnancy and IQ at age 7 years,” Int J Environ Res Public Health, vol. 14, no. 5, 2017, doi: 10.3390/ijerph14050506. [CrossRef] [PubMed] [Google Scholar]
  97. B. van Wendel de Joode et al., “Pesticide exposure and neurodevelopment in children aged 6–9 years from Talamanca, Costa Rica,” Cortex, vol. 85, pp. 137–150, 2016, doi: 10.1016/j.cortex.2016.09.003. [CrossRef] [PubMed] [Google Scholar]
  98. A. Mamane et al., “Increase in the Risk of Respiratory Disorders in Adults and Children Related to Crop-Growing in Niger,” J Environ Public Health, vol. 2016, 2016, doi: 10.1155/2016/9848520. [CrossRef] [Google Scholar]
  99. J. Butler-Dawson, K. Galvin, P. S. Thorne, and D. S. Rohlman, “Organophosphorus pesticide exposure and neurobehavioral performance in Latino children living in an orchard community,” Neurotoxicology, vol. 53, pp. 165–172, 2016, doi: 10.1016/j.neuro.2016.01.009. [CrossRef] [PubMed] [Google Scholar]
  100. S. Donauer et al., “An Observational Study to Evaluate Associations between Low-Level Gestational Exposure to Organophosphate Pesticides and Cognition during Early Childhood,” Am J Epidemiol, vol. 184, no. 5, pp. 410–418, 2016, doi: 10.1093/aje/kwv447. [CrossRef] [PubMed] [Google Scholar]
  101. M. A. Furlong et al., “Prenatal exposure to organophosphorus pesticides and childhood neurodevelopmental phenotypes,” Environ Res, vol. 158, no. July, pp. 737–747, 2017, doi: 10.1016/j.envres.2017.07.023. [CrossRef] [PubMed] [Google Scholar]
  102. R. Castorina et al., “Current-use flame retardants: Maternal exposure and neurodevelopment in children of the CHAMACOS cohort,” Chemosphere, vol. 189, pp. 574–580, 2017, doi: 10.1016/j.chemosphere.2017.09.037. [CrossRef] [PubMed] [Google Scholar]
  103. P. A. Vidi et al., “Personal samplers of bioavailable pesticides integrated with a hair follicle assay of DNA damage to assess environmental exposures and their associated risks in children,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 822, pp. 27–33, Oct. 2017, doi: 10.1016/J.MRGENTOX.2017.07.003. [CrossRef] [Google Scholar]
  104. K. Yamazaki et al., “Association between prenatal exposure to organochlorine pesticides and the mental and psychomotor development of infants at ages 6 and 18 months: The Hokkaido Study on Environment and Children’s Health,” Neurotoxicology, vol. 69, pp. 201–208, 2018, doi: 10.1016/j.neuro.2017.11.011. [CrossRef] [PubMed] [Google Scholar]
  105. S. Suhartono et al., “Pesticide exposure and thyroid function in elementary school children living in an agricultural area, Brebes District, Indonesia,” International Journal of Occupational and Environmental Medicine, vol. 9, no. 3, pp. 137–144, 2018, doi: 10.15171/ijoem.2018.1207. [CrossRef] [PubMed] [Google Scholar]
  106. Y. Li et al., “Pesticide metabolite concentrations in Queensland pre-schoolers – Exposure trends related to age and sex using urinary biomarkers,” Environ Res, vol. 176, no. March, p. 108532, 2019, doi: 10.1016/j.envres.2019.108532. [CrossRef] [PubMed] [Google Scholar]
  107. S. Leite et al., “DNA damage induced by exposure to pesticides in children of rural areas in Paraguay,” Indian Journal of Medical Research, vol. 150, no. 3, p. 290, 2019, doi: 10.4103/ijmr.IJMR_1497_17. [CrossRef] [PubMed] [Google Scholar]
  108. C. Raherison et al., “Pesticides Exposure by Air in Vineyard Rural Area and Respiratory Health in Children: A pilot study,” Environmental Research, vol. 169. pp. 189–195, 2019. doi: 10.1016/j.envres.2018.11.002. [Google Scholar]
  109. K. Pape et al., “Parental occupational exposure pre- A nd post-conception and development of asthma in offspring,” Int J Epidemiol, vol. 49, no. 6, pp. 1856–1869, 2020, doi: 10.1093/ije/dyaa085. [Google Scholar]
  110. F. Salimi et al., “Organochlorine pesticides induce promoter hypermethylation of MGMT in papillary thyroid carcinoma,” Gene Rep, vol. 23, 2021, doi: 10.1016/j.genrep.2021.101142. [Google Scholar]
  111. K. Yamazaki et al., “Associations between prenatal exposure to organochlorine pesticides and thyroid hormone levels in mothers and infants: The Hokkaido study on environment and children’s health,” Environ Res, vol. 189, no. May, p. 109840, 2020, doi: 10.1016/j.envres.2020.109840. [CrossRef] [PubMed] [Google Scholar]
  112. M. T. Muñoz-Quezada et al., “Longitudinal exposure to pyrethroids (3-PBA and trans-DCCA) and 2,4-D herbicide in rural schoolchildren of Maule region, Chile,” Science of the Total Environment, vol. 749, 2020, doi: 10.1016/j.scitotenv.2020.141512. [Google Scholar]
  113. R. Gilden et al., “Gestational pesticide exposure and child respiratory health,” Int J Environ Res Public Health, vol. 17, no. 19, pp. 1–18, 2020, doi: 10.3390/ijerph17197165. [Google Scholar]
  114. M. H. Jacobson et al., “Organophosphate pesticides and progression of chronic kidney disease among children: A prospective cohort study,” Environ Int, vol. 155, 2021, doi: 10.1016/j.envint.2021.106597. [CrossRef] [PubMed] [Google Scholar]
  115. S. Chetty-Mhlanga et al., “A prospective cohort study of school-going children investigating reproductive and neurobehavioral health effects due to environmental pesticide exposure in the Western Cape, South Africa: Study protocol,” BMC Public Health, vol. 18, no. 1, pp. 1–13, 2018, doi: 10.1186/s12889-018-5783-0. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.