Open Access
Issue
E3S Web Conf.
Volume 489, 2024
4th International GIRE3D Congress “Participatory and Integrated Management of Water Resources in Arid Zones” (GIRE3D 2023)
Article Number 04015
Number of page(s) 7
Section Numerical Modeling, Remote Sensing, Geomatic & Application of Intelligence Artificielle
DOI https://doi.org/10.1051/e3sconf/202448904015
Published online 09 February 2024
  1. D. Verner, D. Treguer, J. Redwood, J. Christensen, R. McDonnell, C. Elbert, Y. Konishi, and S. Belghazi, Climate variability, drought, and drought management in Morocco’s agricultural sector, World Bank, (2018) [Google Scholar]
  2. S. Acharki, S. Taia, Y. Arjdal, and J. Hack, Hydrological modeling of spatial and temporal variations in streamflow due to multiple climate change scenarios in northwestern Morocco, Clim. Serv. 30, (2023) [Google Scholar]
  3. K. Oukaddour, M. Le Page, and Y. Fakir, Toward a Redefinition of Agricultural Drought Periods—A Case Study in a Mediterranean Semi-Arid Region, Remote Sens. 16, 83 (2023) [CrossRef] [Google Scholar]
  4. F. El Qorchi, M. Yacoubi Khebiza, O. A. Omondi, A. Karmaoui, Q. B. Pham, and S. Acharki, Analyzing Temporal Patterns of Temperature, Precipitation, and Drought Incidents: A Comprehensive Study of Environmental Trends in the Upper Draa Basin, Morocco, Water 15, 3906 (2023) [Google Scholar]
  5. Y. Ouassanouan, Y. Fakir, V. Simonneaux, M. H. Kharrou, H. Bouimouass, I. Najar, M. Benrhanem, F. Sguir, and A. Chehbouni, Multi-decadal analysis of water resources and agricultural change in a Mediterranean semiarid irrigated piedmont under water scarcity and human interaction, Sci. Total Environ. 834, 155328 (2022) [CrossRef] [Google Scholar]
  6. A. Amazirh, A. Chehbouni, E. H. Bouras, M. Benkirane, B. A. Hssaine, and D. Entekhabi, Drought cascade lag time estimation across Africa based on remote sensing of hydrological cycle components, Adv. Water Resour. 182, 104586 (2023) [CrossRef] [Google Scholar]
  7. C. Elair, K. Rkha Chaham, and A. Hadri, Assessment of drought variability in the Marrakech-Safi region (Morocco) at different time scales using GIS and remote sensing, Water Supply 23, 4592 (2023) [CrossRef] [Google Scholar]
  8. H. Ouatiki, A. Boudhar, A. Ouhinou, A. Arioua, M. Hssaisoune, H. Bouamri, and T. Benabdelouahab, Trend analysis of rainfall and drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010, Arab. J. Geosci. 12, 1 (2019) [CrossRef] [Google Scholar]
  9. O. Hakam, A. Baali, T. El Kamel, Y. Ahouach, and K. Azennoud, Comparative evaluation of various drought indices (DIs) to monitor drought status: A case study of Moroccan Lower Sebou basin, Kuwait J. Sci. 49, (2022) [Google Scholar]
  10. M. A. Alawsi, S. L. Zubaidi, N. S. Al-Bdairi, N. Al-Ansari, and K. Hashim, Drought forecasting: a review and assessment of the hybrid techniques and data pre-processing, Hydrol. 9, (2022) [Google Scholar]
  11. A. Elbeltagi, F. AlThobiani, M. Kamruzzaman, S. Shaid, D. K. Roy, L. Deb, M. M. Islam, P. K. Kundu, and M. M. Rahman, Estimating the standardized precipitation evapotranspiration index using data-driven techniques: A regional study of Bangladesh, Water 14, 1764 (2022) [CrossRef] [Google Scholar]
  12. S. Acharki, S. K. Singh, E. V. do Couto, Y. Arjdal, and A. Elbeltagi, Spatiotemporal distribution and prediction of agricultural and meteorological drought in a Mediterranean coastal watershed via GIS and machine learning, Phys. Chem. Earth 131, 103425 (2023) [CrossRef] [Google Scholar]
  13. M. Kili, B. El Mansouri, and J. Chao, Bilan hydrique des sols et recharge de la nappe profonde de la plaine du Gharb (Maroc), Sci. Chang. Planétaires/Sécheresse 19, 145 (2008) [Google Scholar]
  14. S. Acharki, M. Amharref, R. El Halimi, and A.-S. Bernoussi, Évaluation par approche statistique de l’impact des changements climatiques sur les ressources en eau: application au périmètre du Gharb (Maroc), Rev. Des Sci. l’Eau/Journal Water Sci. 32, 291 (2019) [Google Scholar]
  15. S. M. Vicente-Serrano, S. Beguería, and J. I. López-Moreno, A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index, J. Clim. 23, 1696 (2010) [CrossRef] [Google Scholar]
  16. J. R. Quinlan, Learning with continuous classes. In 5th Australian joint conference on artificial intelligence (World Scientific, 1992), pp. 343–348 [Google Scholar]
  17. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, Lightgbm: A highly efficient gradient boosting decision tree, Adv. Neural Inf. Process. Syst. 30, (2017) [Google Scholar]
  18. S. Acharki, A. Raza, F. Alshehri, A. Tegos, M. Amharref, A. S. Bernoussi, S. K. Singh, and A. Elbeltagie, Comparative Assessment of Eight Empirical and Four Hybrid Machine Learning Models for Estimating Daily Reference Evapotranspiration in Sub-Humid and Semi-Arid Climates, (2023) [Google Scholar]
  19. O. Hakam, A. Baali, K. Azennoud, T. El Kame, Y. A. Brahim, and Y. Ahouach, Spatiotemporal evolution of droughts and their teleconnections with large-scale climatic indices in the Lower Sebou Basin in northwestern Morocco, Acta Geogr. Slov. 62, (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.