Open Access
Issue |
E3S Web Conf.
Volume 489, 2024
4th International GIRE3D Congress “Participatory and Integrated Management of Water Resources in Arid Zones” (GIRE3D 2023)
|
|
---|---|---|
Article Number | 04019 | |
Number of page(s) | 7 | |
Section | Numerical Modeling, Remote Sensing, Geomatic & Application of Intelligence Artificielle | |
DOI | https://doi.org/10.1051/e3sconf/202448904019 | |
Published online | 09 February 2024 |
- S. Belaqziz et al., “Irrigation scheduling of a classical gravity network based on the Covariance Matrix Adaptation Evolutionary Strategy algorithm, ” Comput. Electron. Agric., vol. 102, pp. 64–72, Mar. 2014, doi: 10.1016/j.compag.2014.01.006. [CrossRef] [Google Scholar]
- S. L. Davis, M. D. Dukes, and G. L. Miller, “Landscape irrigation by evapotranspiration-based irrigation controllers under dry conditions in Southwest Florida, ” Agric. Water Manag., vol. 96, no. 12, pp. 1828–1836, Dec. 2009, doi: 10.1016/J.AGWAT.2009.08.005. [CrossRef] [Google Scholar]
- A. Diarra et al., “Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa, ” Agric. Water Manag., vol. 193, pp. 71– 88, Nov. 2017, doi: 10.1016/J.AGWAT.2017.08.007. [CrossRef] [Google Scholar]
- S. Amani and H. Shafizadeh-Moghadam, “A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data, ” Agric. Water Manag., vol. 284, p. 108324, Jun. 2023, doi: 10.1016/J.AGWAT.2023.108324. [CrossRef] [Google Scholar]
- A. Subedi and J. L. Chávez, “Crop Evapotranspiration (ET) Estimation Models: A Review and Discussion of the Applicability and Limitations of ET Methods, ” J. Agric. Sci., vol. 7, no. 6, p. p50, May 2015, doi: 10.5539/JAS.V7N6P50. [Google Scholar]
- B. Duchemin et al., “Agrometerological study of semi‐arid areas: an experiment for analysing the potential of time series of FORMOSAT‐2 images (Tensift‐Marrakech plain), ” Int. J. Remote Sens., vol. 29, no. 17–18, pp. 5291–5299, 2008, doi: 10.1080/01431160802036482. [CrossRef] [Google Scholar]
- C. Carter and S. Liang, “Evaluation of ten machine learning methods for estimating terrestrial evapotranspiration from remote sensing, ” Int. J. Appl. Earth Obs. Geoinf., vol. 78, pp. 86–92, Jun. 2019, doi: 10.1016/J.JAG.2019.01.020. [Google Scholar]
- V. Douna, V. Barraza, F. Grings, A. Huete, N. Restrepo-Coupe, and J. Beringer, “Towards a remote sensing data based evapotranspiration estimation in Northern Australia using a simple random forest approach, ” J. Arid Environ., vol. 191, p. 104513, Aug. 2021, doi: 10.1016/J.JARIDENV.2021.104513. [CrossRef] [Google Scholar]
- Y. Liu et al., “A framework for actual evapotranspiration assessment and projection based on meteorological, vegetation and hydrological remote sensing products, ” Remote Sens., vol. 13, no. 18, p. 3643, Sep. 2021, doi: 10.3390/RS13183643/S1. [CrossRef] [Google Scholar]
- V. G. Stefan, O. Merlin, S. Er-Raki, M. J. Escorihuela, and S. Khabba, “Consistency between In Situ, Model-Derived and High-Resolution-Image-Based Soil Temperature Endmembers: Towards a Robust Data-Based Model for Multi-Resolution Monitoring of Crop Evapotranspiration, ” Remote Sens. 2015, Vol. 7, Pages 10444-10479, vol. 7, no. 8, pp. 10444–10479, Aug. 2015, doi: 10.3390/RS70810444. [CrossRef] [Google Scholar]
- Z. Chen, R. Shi, and S. Zhang, “An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data, ” Front. Earth Sci., vol. 7, no. 1, pp. 103–111, Mar. 2013, doi: 10.1007/S11707-012-0346-7/METRICS. [CrossRef] [Google Scholar]
- L. A. Reyes Rojas, I. Moletto-Lobos, F. Corradini, C. Mattar, R. Fuster, and C. Escobar-Avaria, “Determining actual evapotranspiration based on machine learning and sinusoidal approaches applied to thermal high-resolution remote sensing imagery in a semi-arid ecosystem, ” Remote Sens., vol. 13, no. 20, p. 4105, Oct. 2021, doi: 10.3390/RS13204105/S1. [CrossRef] [Google Scholar]
- P. S. Käfer et al., “Artificial neural networks model based on remote sensing to retrieve evapotranspiration over the Brazilian Pampa, ” https://doi.org/10.1117/1.JRS.14.038504, vol. 14, no. 3, p. 038504, Sep. 2020, doi: 10.1117/1.JRS.14.038504. [Google Scholar]
- P. Hao, L. Di, E. Yu, L. Guo, Z. Sun, and H. Zhao, “Using machine learning and trapezoidal model to derive All-weather et from Remote sensing Images and Meteorological Data, ” 2021 9th Int. Conf. AgroGeoinformatics, Agro-Geoinformatics 2021, Jul. 2021, doi: 10.1109/AGROGEOINFORMATICS50104.2021.9530341. [Google Scholar]
- Y. Liu, S. Zhang, J. Zhang, L. Tang, and Y. Bai, “Assessment and Comparison of Six Machine Learning Models in Estimating Evapotranspiration over Croplands Using Remote Sensing and Meteorological Factors, ” Remote Sens. 2021, Vol. 13, Page 3838, vol. 13, no. 19, p. 3838, Sep. 2021, doi: 10.3390/RS13193838. [CrossRef] [Google Scholar]
- S. Ha and H. Jeong, “Unraveling hidden interactions in complex systems with deep learning, ” Sci. Reports 2021 111, vol. 11, no. 1, pp. 1–13, Jun. 2021, doi: 10.1038/s41598-021-91878-w. [Google Scholar]
- R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, “Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations (FAO)., ” Rome, 1998. [Google Scholar]
- B. Ait Hssaine, O. Merlin, J. Ezzahar, N. Ojha, S. Er-Raki, and S. Khabba, “An evapotranspiration model self-calibrated from remotely sensed surface soil moisture, land surface temperature and vegetation cover fraction: Application to disaggregated SMOS and MODIS data, ” Hydrol. Earth Syst. Sci., vol. 24, no. 4, pp. 1781–1803, Apr. 2020, doi: 10.5194/HESS-24-1781-2020. [CrossRef] [Google Scholar]
- T. E. Twine et al., “Correcting eddy-covariance flux underestimates over a grassland, ” Agric. For. Meteorol., vol. 103, no. 3, pp. 279–300, Jun. 2000, doi: 10.1016/S0168-1923(00)00123-4. [CrossRef] [Google Scholar]
- L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “CatBoost: unbiased boosting with categorical features, ” in NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, Curran Associates Inc., 2018, pp. 6639–6649. doi: 10.5555/3327757.3327770. [Google Scholar]
- T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system, ” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 13-17-Augu, pp. 785–794, Aug. 2016, doi: 10.1145/2939672.2939785. [Google Scholar]
- G. Ke et al., “LightGBM: A Highly Efficient Gradient Boosting Decision Tree, ” in Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc., 2017, pp. 3149–3157. doi: 10.5555/3294996.3295074. [Google Scholar]
- J. C. Jimenez-Munoz, J. A. Sobrino, D. Skokovic, C. Mattar, and J. Cristobal, “Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data, ” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 10, pp. 1840–1843, 2014, doi: 10.1109/LGRS.2014.2312032. [CrossRef] [Google Scholar]
- Z. Wan, “New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product, ” Remote Sens. Environ., vol. 140, pp. 36–45, Jan. 2014, doi: 10.1016/J.RSE.2013.08.027. [CrossRef] [Google Scholar]
- M. Q. U. Sajib and T. Wang, “Estimation of Land Surface Temperature in an Agricultural Region of Bangladesh from Landsat 8: Intercomparison of Four Algorithms, ” Sensors (Basel)., vol. 20, no. 6, Mar. 2020, doi: 10.3390/S20061778. [Google Scholar]
- C. El Hachimi, S. Belaqziz, S. Khabba, and A. Chehbouni, “Data Science Toolkit: An all-in-one python library to help researchers and practitioners in implementing data science-related algorithms with less effort, ” Softw. Impacts, vol. 12, p. 100240, May 2022, doi: 10.1016/J.SIMPA.2022.100240. [CrossRef] [Google Scholar]
- C. El Hachimi et al., “ClimateFiller: A Python framework for climate time series gap-filling and diagnosis based on artificial intelligence and multi-source reanalysis data, ” Softw. Impacts, vol. 18, p. 100575, Nov. 2023, doi: 10.1016/j.simpa.2023.100575. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.