Open Access
Issue
E3S Web Conf.
Volume 489, 2024
4th International GIRE3D Congress “Participatory and Integrated Management of Water Resources in Arid Zones” (GIRE3D 2023)
Article Number 07001
Number of page(s) 11
Section Chemical and Isotopic Tracers: A Contribution to the Functioning of Hydrological Systems
DOI https://doi.org/10.1051/e3sconf/202448907001
Published online 09 February 2024
  1. Yassine Ez-zaouy, Lhoussaine Bouchaou, Aicha Saad, Mohammed Hssaisoune, Youssef Brouziyne, Driss Dhiba, Abdelghani Chehbouni, (2022) Morocco’s coastal aquifers: Recent observations, evolution and perspectives towards sustainability, Environmental Pollution, Volume 293, 2022, 118498, ISSN 0269-7491, https://doi.org/10.1016/j.envpol.2021.118498. [Google Scholar]
  2. Mohammed, B., Salah, O., Driss, O. et al. Global warming and groundwater from semi-arid areas: Essaouira region (Morocco) as an example. SN Appl. Sci. 2, 1245 (2020). https://doi.org/10.1007/s42452-020-3014-7 [CrossRef] [Google Scholar]
  3. Ahmed, M., Aqnouy, M., & El Messari, J.S. (2021). Sustainability of Morocco’s groundwater resources in response to natural and anthropogenic forces. Journal of Hydrology, 603, 126866. https://doi.org/10.1016/j.jhydrol.2021.126866 [CrossRef] [Google Scholar]
  4. Bouizrou, I., Aqnouy, M., & Bouadila, A. (2022). Spatio-temporal analysis of trends and variability in precipitation across Morocco: Comparative analysis of recent and old non-parametric methods. Journal of African Earth Sciences, 196 : 104691. https://doi.org/10.1016/j.jafrearsci.2022.104691 [CrossRef] [Google Scholar]
  5. El Yousfi, Y., Himi, M., Mourad Aqnouy., Benyoussef, S., Gueddari, H., Lamine, I., ... & Abioui, M. (2023). Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model. International Journal of Environmental Research and Public Health, 20(6), 4992. https://doi.org/10.3390/ijerph20064992 [CrossRef] [PubMed] [Google Scholar]
  6. Secunda, S., Collin, M. L., & Melloul, A.J. (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. Journal of Environmental Management, 54(1), 39-57. [CrossRef] [Google Scholar]
  7. Voudouris K., Kazakis N., Polemio M., Kareklas K. (2010). Assessment of intrinsic vulnerability using DRASTIC model and GIS in Kiti aquifer, Cyprus. Eur Water http://hdl.handle.net/2122/6927 [Google Scholar]
  8. El Mountassir, O., Ouazar, D., Bahir, M., Chehbouni, A., & Carreira, P. M. (2021). GIS-based assessment of aquifer vulnerability using DRASTIC model and stable isotope: a case study on Essaouira basin. Arabian Journal of Geosciences, 14(4). doi:10.1007/s12517-021-06540-6 [CrossRef] [Google Scholar]
  9. Marques J.M., Carreira P.M., Neves O., Marques JE., Teixeira J. (2019). Revision of the hydrogeological conceptual models of two Portuguese thermomineral water systems: similarities and differences. Sustain Water Resour Manag 5:117–133. https://doi.org/10.1007/s40899-018-0218-8 [CrossRef] [Google Scholar]
  10. Prasad, R.K., Singh, V.S., Krishnamacharyulu, S.K.G., & Banerjee, P. (2011). Application of the DRASTIC model and GIS for assessing vulnerability in a hard rock granitic aquifer. Environmental Monitoring and Assessment, 176, 143-155. [CrossRef] [PubMed] [Google Scholar]
  11. Bera, A., Mukhopadhyay, B.P., Chowdhury, P., Ghosh, A., & Biswas, S. (2021). Groundwater vulnerability assessment using GIS-based DRASTIC model in Nangasai River basin, India with special emphasis on agricultural contamination. Ecotoxicol. Environ. Saf. 214, 112085. https://doi.org/10.1016/j.ecoenv.2021.112085 [CrossRef] [Google Scholar]
  12. Paul, S., & Das, C.S., (2021). An investigation of groundwater vulnerability in the north 24 parganas district using DRASTIC and hybrid-DRASTIC models: a case study. Environ. Adv. 5, 100093 [CrossRef] [Google Scholar]
  13. Olojoku, I.K., Modreck, G., Adeyinka, O.S., & Adebayo, Y.M. (2017). Vulnerability assessment of shallow aquifer hand-dug Wells in rural parts of northcentral Nigeria using AVI and GOD methods. Pac. J. Sci. Technol. 18 (1), 325–333. [Google Scholar]
  14. Yin, L., Zhang, E., Wang, X., Wenninger, J., Dong, J., Guo, L., & Huang, J., (2013). A GISbased DRASTIC model for assessing groundwater vulnerability in the Ordos Plateau, China. Environmental Earth Sciences 69, 171–185. https://doi.org/10.1007/s12665-012-1945-z. [CrossRef] [Google Scholar]
  15. Majandang, J., & Sarapirome, S. (2013). Groundwater vulnerability assessment and sensitivity analysis in Nong Rua, Khon Kaen, Thailand, using a GIS-based SINTACS model. Environmental Earth Sciences, 68, 2025-2039. [CrossRef] [Google Scholar]
  16. Abbasi, S., Mohammadi, K., Kholghi, M., & Howard, K. (2013). Aquifer vulnerability assessments using DRASTIC, weights of evidence, and the analytic element method. Hydrological Sciences Journal, 58(1), 186-197. [CrossRef] [Google Scholar]
  17. Shah, S.H.I.A., Yan, J., Ullah, I., Aslam, B., Tariq, A., Zhang, L., & Mumtaz, F. (2021). Classification of aquifer vulnerability by using the DRASTIC index and geo-electrical techniques. Water 13 (16), 2144. [CrossRef] [Google Scholar]
  18. Khan, R., & Jhariya, D.C. 2019. Assessment of groundwater pollution vulnerability using GIS based modified DRASTIC model in Raipur City, Chhattisgarh. J. Geol. Soc. India 93 (3), 293–304 [CrossRef] [Google Scholar]
  19. Ekwere, A.S., & Edet, A.S. (2017). A comparative assessment of vulnerability of the Oban massif aquifer system, SE Nigeria using DRASTIC, GOD and AVI models. Int. J. Sci. Eng. Investigat. 6 (68), 39–45. [Google Scholar]
  20. Neema, J.M., Kassim, R.M., Eliapenda, E.M., & Ibrahimu, C.M. (2022). The use of the DRASTICLU/LC model for assessing groundwater vulnerability to nitrate contamination in Morogoro municipality, Tanzania. Earth 3, 1161–1184. https://doi.org/10.3390/earth3040067. https://www.mdpi.com/journal/earth. [CrossRef] [Google Scholar]
  21. Chenini, I., Zguibi, A., & Kouzana, L. (2015). Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: state of the art and a case study. African Earth Sci. https://doi.org/10.1016/j.jafrearsci.2015.05.008 [Google Scholar]
  22. Foster, S.S.D. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Van Duijvanbooden, W., VanWaegeningh, H.G. (Eds.), Vulnerability of Soil and Groundwater to Pollution, Proceedings and Information No 38 of the International Conference Held in the Netherlands, in 1987, TNO Committee on Hydrological Research 38. Proc., Delft, The Netherlands, pp. 69–86. [Google Scholar]
  23. Dörfliger, N. (1996). Advances in Karst Groundwater Protection Stategy using Artifical Tracer Tests Analysis and Multiattribute Vulnerability Mapping (EPIK method). Ph. D. ThesisUniv. Neuchâtel 308 p.: Neuchâtel. [Google Scholar]
  24. Ribeiro, L. (2000). SI a New Index of Aquifer Susceptibility to Agricultural Pollution. Internal Report, ER-SHA/CVRM, Lisbon Portugal. [Google Scholar]
  25. Anane, M., Abidi, B., Lachaal, F., Limam, A., & Jellali, S. (2013). GIS-based DRASTIC, Pesticide DRASTIC and the Susceptibility Index (SI): comparative study for evaluation of pollution potential in the Nabeul-Hammamet shallow aquifer, Tunisia. Hydrogeol. J. 21, 715–731. https://doi.org/10.1007/s10040-0130952-9. [CrossRef] [Google Scholar]
  26. Amharref, M., Aassine, S., Bernoussi, A.S., & Haddouchi, B.Y. (2007). Groundwater Pollution Vulnerability Mapping: Application to the Gharb Plain (Morocco). Journal of Water Sciences, 20(2), 185-199. [Google Scholar]
  27. Ghouili, N., Jarraya-Horriche, F., Hamzaoui-Azaza, F., Zaghrarni, M. F., Ribeiro, L., & Zammouri, M. (2021). Groundwater vulnerability mapping using the Susceptibility Index (SI) method: Case study of the Takelsa aquifer, Northeastern Tunisia. Journal of African Earth Sciences, 173, 104035. [CrossRef] [Google Scholar]
  28. Ake, G. E., Kouadio, H. B., Dongo, K., Dibi, B., Kouame, F. K., & Biemi, J. (2010). Application of the DRASTIC and SI methods for the study of vulnerability to nitrate (NO3-) pollution in the Bonoua aquifer (Southeastern Côte d’Ivoire). International Journal of Biological and Chemical Sciences, 4(5). [Google Scholar]
  29. Aller, L., Bennet, T., Lehr, J.H., Petty, R.J., & Hackett, G. (1987). DRASTIC: a Standardized System for Evaluating Groundwater Pollution Potentiel Using Hydrogeological Settings. US Environmental Protection Agency, Washington. DC. [Google Scholar]
  30. Mboudou, G. E., Ombolo, A., Kan, J. K., Bon, A. F., & Bineli, E. (2015). Evaluation of the intrinsic vulnerability of the Mingosso watershed (Yaounde region) by parametric methods DRASTIC, SI, and GOD. International Journal of Innovation and Applied Studies, 12(1), 266-286. [Google Scholar]
  31. Kumar, A., & Pramod Krishna, A. (2020). Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in the hard rock aquifer system in India. Geocarto International, 35(11), 1149-1178. [CrossRef] [Google Scholar]
  32. Marouane B, Belhsain K, Jahdi M, El Hajjaji S, Dahchour A, Dousset S, Satrallah A (2014) Impact of agricultural practices on groundwater quality: Case of Gharb regionMorocco. J Mater Environ Sci 5 (Suppl. 1): 2151–2155 [Google Scholar]
  33. Darwesh, N.; Naser, R.S.; Al-Qawati, M.; Raweh, S.; El Kharrim, K.; Belghyti, D. Groundwater Quality in Sidi Slimane, Morocco. J. Health Pollut. 2020, 10, 200309. [CrossRef] [PubMed] [CrossRef] [Google Scholar]
  34. Hamza, MH, Maâlej, A, Ajmi, M. & Added, A. (2010). Validity of the vulnerability methods DRASTIC and SI applied by GIS technique to the study of diffuse agricultural pollution in two phreatic aquifers of a semi-arid region (Northeast of Tunisia). Aquamundi 1009: 057–064. https://doi.org/10.4409/Am006-10-0009 [Google Scholar]
  35. Batchi, M., Karkouri, J. A., Fenjiro, I., & Maaqili, M.E. (2017). Étude comparative de deux modèles (DRASTIC et SI) pour l’évaluation de la sensibilité de la nappe phréatique de Mnasra (Maroc nord-occidental) à la pollution d’origine agricole. Physio-Géo. Géographie physique et environnement, (Volume 11), 4364. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.