Open Access
Issue |
E3S Web Conf.
Volume 491, 2024
International Conference on Environmental Development Using Computer Science (ICECS’24)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 15 | |
Section | Energy Management for Sustainable Environment | |
DOI | https://doi.org/10.1051/e3sconf/202449101003 | |
Published online | 21 February 2024 |
- Razmjoo A, Khalili N, Majidi Nezhad M, Mokhtari N, Davarpanah A (2020) The main role of energy sustainability indicators on the water management. Modeling Earth Systems and Environment 6:1419-1426 [CrossRef] [Google Scholar]
- Hashmi SH, Fan H, Fareed Z, Shahzad F (2021) Asymmetric nexus between urban agglomerations and environmental pollution in top ten urban agglomerated countries using quantile methods. Environ Sci Pollut Res 28 (11):13404-13424 [CrossRef] [PubMed] [Google Scholar]
- United Nations (2015) Goals 7: Ensure access to affordable, reliable, sustainable and modern energy for all. UNSDG. https://bit.ly/3DHOTp3. Accessed 3rd January 2023 [Google Scholar]
- Kyriakopoulos GL, Arabatzis G (2016) Electrical energy storage systems in electricity production: Energy policies, innovative technologies, and regulatory regimes. Renewable Sustainable Energy Rev 56:1044-1067 [CrossRef] [Google Scholar]
- Soroush M, Chmielewski DJ (2013) Process systems opportunities in power production,storage and distribution. Computers & chemical engineering 51:86-95 [CrossRef] [Google Scholar]
- Munir MA, Khattak A, Imran K, Ulasyar A, Ullah N, Haq AU, Khan A (2022) Artificial neural network based simplified one day ahead forecasting of solar photovoltaic power production. J Eng Res (Kuwait) 10 (1):175-189. doi:10.36909/jer.10425 [Google Scholar]
- Siavash NK, Ghobadian B, Najafi G, Rohani A, Tavakoli T, Mahmoodi E, Mamat R, mazlan M (2021) Prediction of power production and rotor angular speed of a small wind turbine equipped to a controllable duct using artificial neural network and multiple linear regression. Environmental Research 196. doi:10.1016/j.envres.2020.110434 [CrossRef] [PubMed] [Google Scholar]
- Azad A, Aghaei E, Jalali A, Ahmadi P (2021) Multi-objective optimization of a solar chimney for power production and water desalination using neural network. Energy Convers Manage 238. doi:10.1016/j.enconman.2021.114152 [Google Scholar]
- Sharifzadeh M, Sikinioti-Lock A, Shah N (2019) Machine-learning methods for integrated renewable power production: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renewable Sustainable Energy Rev 108:513-538. doi:10.1016/j.rser.2019.03.040 [CrossRef] [Google Scholar]
- Das, S. K., Khan, M. M. R., Guha, A. K., Das, A. R., & Mandal, A. B. (2012). Silver-nano biohybride material: synthesis, characterization and application in water purification. Bioresource technology,124, 495-499. [CrossRef] [PubMed] [Google Scholar]
- Reinoso, D. M., Damiani, D. E., &Tonetto, G. M. (2012). Zinc carboxylic salts used as catalyst in the biodiesel synthesis by esterification and transesterification: Study of the stability in the reaction medium. Applied Catalysis A: General, 449, 88-95. [CrossRef] [Google Scholar]
- Wong SL, Nyakuma BB, Wong KY, Lee CT, Lee TH, Lee CH (2020) Microplastics and nanoplastics in global food webs: A bibliometric analysis (2009–2019). Marine pollution bulletin 158:111432 [CrossRef] [PubMed] [Google Scholar]
- Ajibade, S.-S. M. & Ojeniyi, A. 2022. Bibliometric Survey on Particle Swarm Optimization Algorithms (2001–2021). Journal of Electrical and Computer Engineering. [Google Scholar]
- Nyakuma BB, Wong S, Mong GR, Utume LN, Oladokun O, Wong KY, Ivase TJP, Abdullah TAT (2021) Bibliometric analysis of the research landscape on rice husks gasification (1995–2019). Environ Sci Pollut Res 28 (36):49467-49490. doi:10.1007/s11356-021-15761-x [CrossRef] [PubMed] [Google Scholar]
- Ajibade S-SM, Zaidi A, Bekun FV, Adediran AO, Bassey MA (2023) A research landscape bibliometric analysis on climate change for last decades: Evidence from applications of machine learning. Heliyon:e20297 [Google Scholar]
- NRFK. 2019. Annual budget of the National Research Foundation of Korea [Online]. South Korea: NRF Korea. Available: https://www.nrf.re.kr/eng/page/3ba17500-5bfd-4d59-ab1b-eb5e3239881a [Accessed 12th September 2023]. [Google Scholar]
- NSFC. 2022. NSFC at a Glance [Online]. Beijing, China: National Science Fund China. Available: https://www.nsfc.gov.cn/english/site_1/about/6.html[Accessed 24 February 2022]. [Google Scholar]
- Notton G, Nivet M-L, Voyant C, Paoli C, Darras C, Motte F, Fouilloy A (2018) Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renewable Sustainable Energy Rev 87:96-105 [CrossRef] [Google Scholar]
- Jahangoshai Rezaee M, Dadkhah M (2019) A hybrid approach based on inverse neural network to determine optimal level of energy consumption in electrical power production.Comput Ind Eng 134:52-63. doi:10.1016/j.cie.2019.05.024 [Google Scholar]
- Panta S, Premrudeepreechacharn S, Nuchprayoon S, Dechthummarong C, Janjommanit S, Yachiangkam S Optimal economic dispatch for power production using artificial neural network. 8th InternationalPower Engineering Conference, IPEC 2007, Singapore, ate 2007. pp 1343-1348 [Google Scholar]
- Yilmaz C, Sen O (2022) Thermoeconomic analysis and artificial neural network based genetic algorithm optimization of geothermal and solar energy assisted hydrogen and power production. Int J Hydrogen Energy 47 (37):16424-16439. doi:10.1016/j.ijhydene.2022.03.140 [CrossRef] [Google Scholar]
- Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM (2021) How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res 133:285-296 [CrossRef] [Google Scholar]
- Zaidi A, Ajibade S-SM, Musa M, Bekun FV (2023) New Insights into the Research Landscape on the Application of Artificial Intelligence in Sustainable Smart Cities: A Bibliometric Mapping and Network Analysis Approach. Int J Energy Econ Policy (4):287 [CrossRef] [Google Scholar]
- Ajibade S-SM, Bekun FV, Adedoyin FF, Gyamfi BA, Adediran AO (2023) Machine Learning Applications in Renewable Energy (MLARE) Research: A Publication Trend and Bibliometric Analysis Study (2012–2021). Clean Technologies 5 (2):497-517 [CrossRef] [Google Scholar]
- Nyakuma BB, Mahyon NI, ChiongMS, Rajoo S, Pesiridis A, Wong SL, Martinez-Botas R (2023) Recovery and utilisation of waste heat from flue/exhaust gases: a bibliometric analysis (2010-2022). Environ Sci Pollut Res. doi:10.1007/s11356-023-28791-4. [Google Scholar]
- Lee CH, Lee TH, Wong SL, Nyakuma BB, Hamdan N, Khoo SC, Ramachandran H, Jamaluddin H (2023) Characteristics and trends in global Edible Bird’s Nest (EBN) research (2002–2021): a review and bibliometric study. Journal of Food Measurement and Characterization:1-22 [Google Scholar]
- Wong S, Mah AXY, Nordin AH, Nyakuma BB, Ngadi N, Mat R, Amin NAS, Ho WS, Lee TH (2020) Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018. Environ Sci Pollut Res 27:7757-7784 [CrossRef] [PubMed] [Google Scholar]
- Kumar DV Intelligent controllers for automatic production control. Proceedings of IEEE TENCON'98. IEEE Region 10 International Conference on Global Connectivity in Energy, Computer, Communication and Control (Cat. No. 98CH36229), ate 1998. IEEE, pp 557-574 [Google Scholar]
- Farooq Z, Rahman A, Lone SA (2022) Power production control of restructured hybrid power system with FACTS and energy storage devices using optimal cascaded fractional‐order controller. Optimal Control Applications and Methods 43 (3):757-786 [CrossRef] [Google Scholar]
- Singh, B. & Sharma, S. 2011. Neural network based voltage and frequency controller for isolated wind power production. IETE Journal of Research, 57, 467-477. [CrossRef] [Google Scholar]
- Sitharthan, R., Parthasarathy, T., Sheeba Rani, S. & Ramya, K. C. 2019. An improved radial basis function neural network control strategy-based maximum power point tracking controller for wind power production system. Transactions of the Institute of Measurement and Control, 41, 3158-3170. [CrossRef] [Google Scholar]
- Chao KH, Liao BJ, Hung CP (2013) Applying a cerebellar model articulation controller neural network to a photovoltaic power production system fault diagnosis. Int J Photoenergy 2013. doi:10.1155/2013/839621 [Google Scholar]
- Lu KH, Hong CM, Xu Q (2019) Recurrent wavelet-based Elman neural network with modified gravitational search algorithm control for integrated offshore wind and wave power production systems. Energy 170:40-52. doi:10.1016/j.energy.2018.12.084 [CrossRef] [Google Scholar]
- Shanmugam L, Mani P, Joo YH (2020) Stabilisation of event-triggered-based neural network control system and its application to wind powerproduction systems. IET Control Theory Appl 14 (10):1321-1333. doi:10.1049/iet-cta.2019.0246. [CrossRef] [Google Scholar]
- Siavash, N. K., Ghobadian, B., Najafi, G., Rohani, A., Tavakoli, T., Mahmoodi, E., Mamat, R. & Mazlan, M. 2021. Prediction of power production and rotor angular speed of a small wind turbine equipped to a controllable duct using artificial neural network and multiple linear regression. Environmental Research, 196. [Google Scholar]
- Sri RL, Divya V (2020) Intelligent energy-aware decision-making at the edge in healthcare using fog infrastructure. Energy Efficiency of Medical Devices and Healthcare Applications. Elsevier, pp 87-107 [Google Scholar]
- Kim MK, Cha J, Lee E, Pham VH, Lee S, Theera-Umpon N (2019) Simplified neural network model design with sensitivity analysis and electricity consumption prediction in a commercial building. Energies 12 (7):1201 [CrossRef] [Google Scholar]
- Shalaby AM, Sidhu MS, Tan WC, Wei LZ, Yong CJ, Xi LY A Prototype Model of Monitoring Energy Consumption and Optimizing Distribution of Smart Buildings. 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), ate 2022. IEEE, pp 1-5 [Google Scholar]
- Donohoo BK (2012) Machine learning techniques for energy optimization in mobile embedded systems. Colorado State University [Google Scholar]
- Pedram O, Asadi E, Chenari B, Moura P, Gameiro da Silva M (2023) A Review of Methodologies for Managing Energy Flexibility Resources in Buildings. Energies 16 (17):6111 [CrossRef] [Google Scholar]
- Liu RF (2012) Wind power production prediction by particle swarm optimization algorithm and RBF neural network (trans: Singapore Institute of E). 2011 International Conference on Material Science and Information Technology, MSIT2011, vol 433-440. Singapore. doi:10.4028/www.scientific.net/AMR.433-440.2099 [Google Scholar]
- Assareh E, Poultangari I, Tandis E, Nedaei M (2016) Optimizing the wind power production in low wind speed areas using an advanced hybrid RBF neural network coupled with the HGA-GSA optimization method. J Mech Sci Technol 30 (10):4735-4745. doi:10.1007/s12206-016-0945-4 [CrossRef] [Google Scholar]
- Yu T, Tao J, Wind water and solar complementary power production system based on particle swarm optimization and neural network algorithm. 2nd International Conference on Oil and Gas Engineering and Geological Sciences, OGEGS 2020, ate 2020. IOP Publishing Ltd. doi:10.1088/1755-1315/558/5/052073 [Google Scholar]
- Barkh H, Yu A, Friend D, Shani P, Tu Q, Swei O (2022) Vehicle fleet electrification and its effects on the global warming potential of highway pavements in the United States. Resources, Conservation and Recycling 185:106440 [CrossRef] [Google Scholar]
- AlHaddad U, Basuhail A, Khemakhem M, Eassa FE, Jambi K (2023) Towards Sustainable Energy Grids: A Machine Learning-Based Ensemble Methods Approach for Outages Estimation in Extreme Weather Events. Sustainability 15 (16):12622 [CrossRef] [Google Scholar]
- Salgado, P. & Afonso, P. Hybrid fuzzy clustering neural networks to wind power production forecasting. 14th IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2013, 2013 Budapest. 359-363. [Google Scholar]
- Chang GW, Lu HJ, Chen YY, Chang YR Forecasting wind power production by a new type of radial basis function-based neural network. 2017 IEEE Power and Energy Society General Meeting, PESGM 2017, ate 2018. IEEE Computer Society, pp 1-5. doi:10.1109/PESGM.2017.8273959. [Google Scholar]
- Zhang X, Wang R, Liao T, Zhang T, Zha Y Short-term forecasting of wind power production based on the similar day and elman neural network. IEEE Symposium Series on Computational Intelligence, SSCI 2015, ate 2015. Institute of Electrical and Electronics Engineers Inc., pp 647-650. doi:10.1109/SSCI.2015.99. [Google Scholar]
- Wang K, Zhang Y, Lin F, Wang J, Zhu M (2022) Nonparametric Probabilistic Forecasting for Wind Power Production Using Quadratic Spline Quantile Function and Autoregressive Recurrent Neural Network. IEEE Trans Sustainable Energy 13 (4):1930-1943. doi:10.1109/TSTE.2022.3175916. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.