Open Access
Issue
E3S Web Conf.
Volume 491, 2024
International Conference on Environmental Development Using Computer Science (ICECS’24)
Article Number 01004
Number of page(s) 5
Section Energy Management for Sustainable Environment
DOI https://doi.org/10.1051/e3sconf/202449101004
Published online 21 February 2024
  1. James H. Thrall, Xiang Li, Quanzheng Li, Cinthia Cruz, Synho Do, Keith Dreyer, James Brink, Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success. Journal of the American College of Radiology. 2018;15(3B):504-508. [CrossRef] [PubMed] [Google Scholar]
  2. Sindhu J, Renee Namratha. Impact of Artificial Intelligence in chosen Indian Commercial Bank –A Cost Benefit Analysis. Asian Journal of Management. 2019; 10(4):377-384. [CrossRef] [Google Scholar]
  3. Aayush K., Vishal D., Hammad N., Manu K. S. Application of Artificial Intelligence in Curbing Air Pollution: The Case of India. Asian Journal of Management. 2020;11(3):285-290. [CrossRef] [Google Scholar]
  4. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018;2(1):35. [CrossRef] [PubMed] [Google Scholar]
  5. RNSK Kartheek, V Rama Raju, R Md. Shafi. Blue Brain – A New Subway to Artificial Intelligence and Human Machine: A Proposal. Int. J. Tech. 4(2): July-Dec. 2014; Page 287-290 [Google Scholar]
  6. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500-510. [CrossRef] [PubMed] [Google Scholar]
  7. Anitha A, Revathi SV, Jeevanantham S, Eliza Godwin E. Intrusion Detection System based on Artificial Intelligence. Int. J. Tech. 2017; 7(1): 20-24. [Google Scholar]
  8. Reyes M, Meier R, Pereira S, Silva CA, Dahlweid FM, von Tengg-Kobligk H, Summers RM, Wiest R. On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities. Radiol Artif Intell. 2020;2(3):e190043. [Google Scholar]
  9. Rubin DL. Artificial Intelligence in Imaging: The Radiologist’s Role.J Am Coll Radiol. 2019;16(9 Pt B):1309-1317. [CrossRef] [Google Scholar]
  10. Kotta Kranthi Kumar. Importance and Applications of Artificial Intelligence (Metastorm Software) in Pharmaceutical Process Life-Cycle. Res. J. Pharma. Dosage Forms and Tech.2019; 11(2):116-120. [CrossRef] [Google Scholar]
  11. Choy G, Khalilzadeh O, Michalski M, et al. Current Applications and Future Impact of Machine Learning in Radiology. Radiology. 2018;288(2):318-328. [CrossRef] [PubMed] [Google Scholar]
  12. Mun SK, Wong KH, Lo SB, Li Y, Bayarsaikhan S. Artificial Intelligence for the Future Radiology Diagnostic Service. Front Mol Biosci. 2021;7:614258. [CrossRef] [PubMed] [Google Scholar]
  13. Fernando Collado-Mesa, Edilberto Alvarez, Kris Arheart. The Role of Artificial Intelligence in Diagnostic Radiology: A Survey at a Single Radiology Residency Training Program. Journal of the American College of Radiology. 2018 Dec;15(12):1753-1757. [CrossRef] [PubMed] [Google Scholar]
  14. European Society of Radiology (ESR). Impact of artificial intelligence on radiology: a EuroAIM survey among members of the European Society of Radiology. Insights Imaging. 2019;10(1):105. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.