Open Access
Issue
E3S Web Conf.
Volume 491, 2024
International Conference on Environmental Development Using Computer Science (ICECS’24)
Article Number 02015
Number of page(s) 8
Section Smart Systems for Environmental Development
DOI https://doi.org/10.1051/e3sconf/202449102015
Published online 21 February 2024
  1. Klerkx, L., & Rose, D. (2020). Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways?. Global Food Security, 24, 100347. [CrossRef] [Google Scholar]
  2. Neethirajan, S. (2023). Digital Phenotyping: A Game Changer for the Broiler Industry. Animals, 13(16), 2585. [CrossRef] [PubMed] [Google Scholar]
  3. Akther, F. (2023). E-Agri: A Game-Changer for Indian Agriculture. Formosa Journal of Science and Technology, 2(10), 2902-2914. [CrossRef] [Google Scholar]
  4. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming–a review. Agricultural systems, 153, 69-80. [CrossRef] [Google Scholar]
  5. Duguma, A. L., & Bai, X. (2023). Contribution of Internet of Things (IoT) in improving agricultural systems. International Journal of Environmental Science and Technology, 1-14. [Google Scholar]
  6. De Clercq, M., Vats, A., & Biel, A. (2018). Agriculture 4.0: The future of farming technology. Proceedings of the world government summit, Dubai, UAE, 11-13. [Google Scholar]
  7. Rose, D. C., & Chilvers, J. (2018). Agriculture 4.0: Broadening responsible innovation in an era of smart farming. Frontiers in Sustainable Food Systems, 2, 87. [CrossRef] [Google Scholar]
  8. Onnela, J. P. (2021). Opportunities and challenges in the collection and analysis of digital phenotyping data. Neuropsychopharmacology, 46(1), 45-54. [CrossRef] [PubMed] [Google Scholar]
  9. Neethirajan, S., & Kemp, B. (2021). Digital phenotyping in livestock farming. Animals, 11(7), 2009. [Google Scholar]
  10. Agarwal, A., & Saxena, R. K. (2020). Impact of digitalization in agriculture: An overview. International Journal of Management, Technology, and Social Sciences, 5(2), 86-93. [Google Scholar]
  11. Bhardwaj, A. K., Sharma, A., & Bhardwaj, A. (2021). Digital agriculture: A boon to the Indian farming community. Journal of Agribusiness and Rural Development, 61(2), 133-147 [Google Scholar]
  12. Noyes, K. (2014). Big data poised to change the face of agriculture. Fortune data. URL http://fortune.com/2014/05/30/croppingup-on-every-farm-big-data-technology/[30 May 2014]. [Google Scholar]
  13. Sun, Z., Zheng, F., & Yin, S. (2013). Perspectives of research and application of Big Data on smart agriculture. Journal of Agricultural Science and Technology (Beijing), 15(6), 63-71. [Google Scholar]
  14. Abu, N. S., Bukhari, W. M., Ong, C. H., Kassim, A. M., Izzuddin, T. A., Sukhaimie, M. N., … & Rasid, A. F. A. (2022). Internet of things applications in precision agriculture: A review. Journal of Robotics and Control (JRC), 3(3), 338-347. [CrossRef] [Google Scholar]
  15. Astill, J., Dara, R. A., Fraser, E. D., Roberts, B., & Sharif, S. (2020). Smart poultry management: Smart sensors, big data, and the internet of things. Computers and Electronics in Agriculture, 170, 105291. [CrossRef] [Google Scholar]
  16. Akhigbe, B. I., Munir, K., Akinade, O., Akanbi, L., & Oyedele, L. O. (2021). IoT technologies for livestock management: a review of present status, opportunities, and future trends. Big data and cognitive computing, 5(1), 10. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.