Open Access
Issue |
E3S Web Conf.
Volume 491, 2024
International Conference on Environmental Development Using Computer Science (ICECS’24)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 12 | |
Section | Health Development | |
DOI | https://doi.org/10.1051/e3sconf/202449103003 | |
Published online | 21 February 2024 |
- A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017. [CrossRef] [Google Scholar]
- N. R. Abbasi et al., “Early diagnosis of cutaneous melanoma: Revisiting the ABCD criteria,” JAMA Dermatol., vol. 292, no. 22, pp. 2771–2776, 2004. [Google Scholar]
- S. Chatterjee, D. Dey, S. Munshi, and S. Gorai, “Dermatological expert system implementing the ABCD rule of dermoscopy for skin disease identification,” Expert Syst. Appl., vol. 167, 2021, Art. no. 114204. [CrossRef] [Google Scholar]
- K. Møllersen, H. Kirchesch, M. Zortea, T. R. Schopf, K. Hindberg, and F. Godtliebsen, “Computer-aided decision support for melanoma detection applied on melanocytic and nonmelanocytic skin lesions: A comparison of two systems based on automatic analysis of dermoscopic images, ”BioMed. Res. Int., vol. 2015, 2015. [Google Scholar]
- M. Goyal, T. Knackstedt, S. Yan, and S. Hassanpour, “Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities,” Comput. Biol. Med., vol. 127, 2020, Art. no. 104065. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482520303966 [CrossRef] [Google Scholar]
- V. Shah, P. Autee, and P. Sonawane, “Detection of melanoma from skin lesion images using deep learning techniques,” in Proc. Int. Conf. Data Sci. Eng., 2020, pp. 1–8. [Google Scholar]
- A. Adegun and S. Viriri, “Deep learning techniques for skin lesion analysis and melanoma cancer detection: A survey of state-of-the-art,” Artif. Intell. Rev., vol. 54, no. 2, pp. 811–841, 2021. [CrossRef] [Google Scholar]
- M. Garey, D. Johnson, and H. Witsenhausen, “The complexity of the generalized Lloyd-Max problem (corresp.),” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 255–256, Mar. 1982. [CrossRef] [Google Scholar]
- S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, 2009. [Google Scholar]
- Y. Zhou and Z. Song, “Binary decision trees for melanoma diagnosis,” in Proc. Int. Workshop Mult. Classifier Syst., 2013, pp. 374–385. [Google Scholar]
- S. Gilmore, R. Hofmann-Wellenhof, and H. P. Soyer, “A support vector machine for decision support in melanoma recognition,” Exp. Dermatol., vol. 19, no. 9, pp. 830–835, 2010. [CrossRef] [PubMed] [Google Scholar]
- A. Tenenhaus, A. Nkengne, J.-F. Horn, C. Serruys, A. Giron, and B. Fertil, “Detection of melanoma from dermoscopic images of naevi acquired under uncontrolled conditions,” Skin Res. Technol., vol. 16, no. 1, pp. 85–97, 2010. [CrossRef] [Google Scholar]
- D. Ruiz, V. Berenguer, A. Soriano, and B. Sánchez, “A decision support system for the diagnosis of melanoma: A comparative approach,” Expert Syst. Appl., vol. 38, no. 12, pp. 15217–15223, 2011. [CrossRef] [Google Scholar]
- Z. Hu, J. Tang, Z. Wang, K. Zhang, L. Zhang, and Q. Sun, “Deep learning for image-based cancer detection and diagnosis–A survey,” Pattern Recognit., vol. 83, pp. 134–149, 2018. [CrossRef] [Google Scholar]
- E. Nasr-Esfahani et al., “Melanoma detection by analysis of clinical images using convolutional neural network,” in Proc. 38th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2016, pp. 1373–1376. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.