Open Access
Issue
E3S Web Conf.
Volume 491, 2024
International Conference on Environmental Development Using Computer Science (ICECS’24)
Article Number 03023
Number of page(s) 9
Section Health Development
DOI https://doi.org/10.1051/e3sconf/202449103023
Published online 21 February 2024
  1. Al Omari, Marwan. ( 2022). Understanding of Algorithms. KNNs and Naïve Bayes. GRIN Verlag. [Google Scholar]
  2. Bi, Haixia, Miquel Perello-Nieto, Raul Santos-Rodriguez, and Peter Flach. (2021). “Human Activity Recognition Based on Dynamic Active Learning.” IEEE Journal of Biomedical and Health Informatics 25 (4): 922–34. [CrossRef] [PubMed] [Google Scholar]
  3. Chen, Martha, and Françoise Carré. (2020). The Informal Economy Revisited: Examining the Past, Envisioning the Future. Routledge. [CrossRef] [Google Scholar]
  4. Deze, Zeng, Huan Huang, Rui Hou, Seungmin Rho, and Naveen Chilamkurti. (2021). Big Data Technologies and Applications: 10th EAI International Conference, BDTA 2020, and 13th EAI International Conference on Wireless Internet, WiCON 2020, Virtual Event, December 11, 2020, Proceedings. Springer Nature. [Google Scholar]
  5. Ferrari, Anna, Daniela Micucci, Marco Mobilio, and Paolo Napoletano. (2020). “On the Personalization of Classification Models for Human Activity Recognition.” IEEE Access 8: 32066–79. [CrossRef] [Google Scholar]
  6. Fu, Yun. ( 2015). Human Activity Recognition and Prediction. Springer. [Google Scholar]
  7. Helaly, Rabie, Seifeddine Messaoud, Soulef Bouaafia, Mohamed Ali Hajjaji, and Abdellatif Mtibaa. 2023. “DTL-I-ResNet18: Facial Emotion Recognition Based on Deep Transfer Learning and Improved ResNet18.” Signal, Image and Video Processing. https://doi.org/10.1007/s11760-023-02490-6. [Google Scholar]
  8. Hilbe, Joseph M. (2016). Practical Guide to Logistic Regression. CRC Press. [CrossRef] [Google Scholar]
  9. Kong, Yu, and Yun Fu. 2016. “Activity Prediction.” Human Activity Recognition and Prediction. https://doi.org/10.1007/978-3-319-27004-3_6. [Google Scholar]
  10. Li, Kang, Sheng Li, and Yun Fu. (2016). “Time Series Modeling for Activity Prediction.” Human Activity Recognition and Prediction. https://doi.org/10.1007/978-3-319-27004-3_8. [Google Scholar]
  11. Mahmud, Mufti, M. Shamim Kaiser, Stefano Vassanelli, Qionghai Dai, and Ning Zhong. (2021). Brain Informatics: 14th International Conference, BI 2021, Virtual Event, September 17–19, 2021, Proceedings. Springer Nature. [Google Scholar]
  12. Munoz-Organero, Mario. (2019). “Outlier Detection in Wearable Sensor Data for Human Activity Recognition (HAR) Based on DRNNs.” IEEE Access 7: 74422–36. [CrossRef] [Google Scholar]
  13. Omlor, Nicola, Maike Richter, Janik Goltermann, Lavinia A. Steinmann, Anna Kraus, Tiana Borgers, Melissa Klug, et al. (2023). “Treatment with the Second- Generation Antipsychotic Quetiapine Is Associated with Increased Subgenual ACC Activation during Reward Processing in Major Depressive Disorder.” Journal of Affective Disorders, February. https://doi.org/10.1016/j.jad.2023.02.102. [Google Scholar]
  14. Popescu, Ana-Cosmina, Irina Mocanu, and Bogdan Cramariuc. (2020). “Fusion Mechanisms for Human Activity Recognition Using Automated Machine Learning.” IEEE Access 8: 143996–14. [CrossRef] [Google Scholar]
  15. Qiu, Ye, An-Lin Liu, Jie Huang, Wen Zeng, Zhen-Ming Yang, Gao-Neng Fang, Ya Li, et al. (2023). “Comparison of the Clinical Features of HIV-Positive and HIV-Negative Hosts Infected with Talaromyces Marneffei: A Multicenter Retrospective Study.” International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, April. https://doi.org/10.1016/j.ijid.2023.04.398. [Google Scholar]
  16. Ramanujam, E., Thinagaran Perumal, and S. Padmavathi. (2021). “Human Activity Recognition With Smartphone and Wearable Sensors Using Deep Learning Techniques: A Review.” IEEE Sensors Journal 21 (12): 13029–40. [CrossRef] [Google Scholar]
  17. Rico, Janaina, Larissa Siriani, Mila Wander, and Thati Machado. 2017. Princesas GPOWER. Qualis Editora e Comércio de Livros LTDA - ME. [Google Scholar]
  18. Sepahvand, Majid, and Fardin Abdali-Mohammadi. (2022). “Joint Learning Method with Teacher-Student Knowledge Distillation for on-Device Breast Cancer Image Classification.” Computers in Biology and Medicine 155 (December): 106476. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.