Open Access
Issue
E3S Web Conf.
Volume 491, 2024
International Conference on Environmental Development Using Computer Science (ICECS’24)
Article Number 04021
Number of page(s) 11
Section Engineering for Environment Development Applications
DOI https://doi.org/10.1051/e3sconf/202449104021
Published online 21 February 2024
  1. Anshari, M., Almunawar, M. N., Lim, S. A., & Al-Mudimigh, A. (2018). Customer relationship management and big data-enabled: Personalization & customization of services. Applied Computing and Informatics, 15(2), 94–101. [Google Scholar]
  2. Antons, D., & Breidbach, C. F. (2018). Big data, big insights? Advancing service innovation and design with machine learning. Journal of Service Research, 21(1), 17–39. [CrossRef] [Google Scholar]
  3. Balaji, M. S., & Roy, S. K. (2017). Value co-creation with the internet of things technology in the retail industry. Journal of Marketing Management, 33(1–2), 7–31. [CrossRef] [Google Scholar]
  4. Bauer, J., & Jannach, D. (2018). Optimal pricing in e-commerce based on sparse and noisy data. Decision Support Systems, 106, 53–63. [CrossRef] [Google Scholar]
  5. Bolton, R. N., McColl-Kennedy, J. R., Cheung, L., Gallan, A., Orsingher, C., Witell, L., & Zaki, M. (2018). Customer experience challenges: Bringing together digital, physical, and social realms. Journal of Service Management, 29(5), 776–808. [CrossRef] [Google Scholar]
  6. Cambria, E. (2016). Affective computing and sentiment analysis. IEEE Intelligent Systems, 31(2), 102–107. [CrossRef] [Google Scholar]
  7. Chatterjee, S., Ghosh, S. K., Chaudhuri, R., & Nguyen, B. (2019). Are CRM systems ready for AI integration? A conceptual framework of organizational readiness for effective AI-CRM integration. The Bottom Line, 32, 144–157. [CrossRef] [Google Scholar]
  8. Chen, C., Ibekwe-SanJuan, F., & How, J. (2010). The Structure and Dynamics of Co-citation Clusters: A Multiple-Perspective Co-citation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386–1409. [CrossRef] [Google Scholar]
  9. Chen, Y., Lee, J. Y., Sridhar, S., Mittal, V., McCallister, K., & Singal, A. G. (2020). Improving cancer outreach effectiveness through targeting and economic assessments: Insights from a randomized field experiment. Journal of Marketing, 84(3), 1–27. [CrossRef] [Google Scholar]
  10. Costa, P. B., Neto, G. M., & Bertolde, A. I. (2017). Urban mobility indexes: A brief review of the literature. Transportation Research Procedia, 25, 3645–3655. [CrossRef] [Google Scholar]
  11. Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2), 94. [PubMed] [Google Scholar]
  12. Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24–42. [CrossRef] [Google Scholar]
  13. Day, G. S. (2011). Closing the marketing capabilities gap. Journal of marketing, 75(4), 183–195. [CrossRef] [Google Scholar]
  14. Dekimpe, M. (2020). Retailing and retailing research in the age of big data analytics. International Journal of Research in Marketing, 37, 3–14. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.