Open Access
Issue |
E3S Web Conf.
Volume 492, 2024
International Conference on Climate Nexus Perspectives: Toward Urgent, Innovative, Sustainable Natural and Technological Solutions for Water, Energy, Food and Environmental Systems (I2CNP 2023)
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 6 | |
Section | Climate Water Food Energy Nexus | |
DOI | https://doi.org/10.1051/e3sconf/202449204001 | |
Published online | 20 February 2024 |
- A. Challinor, T. Wheeler, C. Garforth, P. Craufurd, and A. Kassam, “Assessing the vulnerability of food crop systems in Africa to climate change,” Clim Change, vol. 83, no. 3, pp. 381–399, Aug. 2007, doi: 10.1007/S10584-007-9249-0/METRICS. [CrossRef] [Google Scholar]
- J. F. Morton, “The impact of climate change on smallholder and subsistence agriculture, ” Proceedings of the National Academy of Sciences, vol. 104, no. 50, pp. 19680–19685, Dec. 2007, doi: 10.1073/PNAS.0701855104. [CrossRef] [PubMed] [Google Scholar]
- M. W. Rosegrant, C. Ringler, and T. Zhu, “Water for Agriculture: Maintaining Food Security under Growing Scarcity, ” https://doi.org/10.1146/annurev.environ.030308.090351, vol. 34, pp. 205–222, Oct. 2009, doi: 10.1146/ANNUREV.ENVIRON.030308.090351. [Google Scholar]
- V. O. Abegunde, M. Sibanda, and A. Obi, “The Dynamics of Climate Change Adaptation in Sub-Saharan Africa: A Review of Climate-Smart Agriculture among Small-Scale Farmers, ” Climate 2019, Vol. 7, Page 132, vol. 7, no. 11, p. 132, Nov. 2019, doi: 10.3390/CLI7110132. [CrossRef] [Google Scholar]
- M. Reynolds et al., “Role of Modelling in International Crop Research: Overview and Some Case Studies, ” Agronomy 2018, Vol. 8, Page 291, vol. 8, no. 12, p. 291, Dec. 2018, doi: 10.3390/AGRONOMY8120291. [CrossRef] [Google Scholar]
- S. Asseng, Y. Zhu, B. Basso, T. Wilson, and D. Cammarano, “Simulation Modeling: Applications in Cropping Systems, ” Encyclopedia of Agriculture and Food Systems, pp. 102–112, Jan. 2014, doi: 10.1016/B978-0-444-52512-3.00233-3. [CrossRef] [Google Scholar]
- H. D. Adams, A. Park Williams, C. Xu, S. A. Rauscher, X. Jiang, and N. G. McDowell, “Empirical and process-based approaches to climate-induced forest mortality models, ” Front Plant Sci, vol. 4, no. NOV, p. 438, Nov. 2013, doi: 10.3389/FPLS.2013.00438/BIBTEX. [PubMed] [Google Scholar]
- G. N. Falconnier et al., “Modelling climate change impacts on maize yields under low nitrogen input conditions in sub-Saharan Africa, ” Glob Chang Biol, vol. 26, no. 10, pp. 5942–5964, Oct. 2020, doi: 10.1111/GCB.15261. [CrossRef] [PubMed] [Google Scholar]
- F. Getachew, H. K. Bayabil, G. Hoogenboom, F. T. Teshome, and E. Zewdu, “Irrigation and shifting planting date as climate change adaptation strategies for sorghum, ” Agric Water Manag, vol. 255, Sep. 2021, doi: 10.1016/j.agwat.2021.106988. [CrossRef] [Google Scholar]
- A. Araya et al., “Evaluating crop management options for sorghum, pearl millet and peanut to minimize risk under the projected midcentury climate scenario for different locations in Senegal, ” Clim Risk Manag, vol. 36, Jan. 2022, doi: 10.1016/j.crm.2022.100436. [Google Scholar]
- F. M. Akinseye, H. A. Ajeigbe, P. C. S. Traore, S. O. Agele, B. Zemadim, and A. Whitbread, “Improving sorghum productivity under changing climatic conditions: A modelling approach, ” Field Crops Res, vol. 246, Feb. 2020, doi: 10.1016/j.fcr.2019.107685. [CrossRef] [Google Scholar]
- E. K. Huet, M. Adam, B. Traore, K. E. Giller, and K. Descheemaeker, “Coping with cereal production risks due to the vagaries of weather, labour shortages and input markets through management in southern Mali, ” European Journal of Agronomy, vol. 140, Oct. 2022, doi: 10.1016/j.eja.2022.126587. [Google Scholar]
- M. W. Gardi, E. Memic, E. Zewdu, and S. Graeff-Hönninger, “Simulating the effect of climate change on barley yield in Ethiopia with the DSSAT-CERES-Barley model, ” Agron J, vol. 114, no. 2, pp. 1128–1145, Mar. 2022, doi: 10.1002/agj2.21005. [CrossRef] [Google Scholar]
- D. Cammarano et al., “The impact of climate change on barley yield in the Mediterranean basin, ” European Journal of Agronomy, vol. 106, pp. 1–11, May 2019, doi: 10.1016/j.eja.2019.03.002. [CrossRef] [Google Scholar]
- S. Belaqziz, S. Khabba, M. H. Kharrou, E. H. Bouras, S. Er-Raki, and A. Chehbouni, “Optimizing the sowing date to improve water management and wheat yield in a large irrigation scheme, through a remote sensing and an evolution strategy-based approach, ” Remote Sens (Basel), vol. 13, no. 18, Sep. 2021, doi: 10.3390/rs13183789. [Google Scholar]
- L. E. F. Dewenam, S. Er-Raki, J. Ezzahar, and A. Chehbouni, “Performance evaluation of the WOFOST model for estimating evapotranspiration, soil water content, grain yield and total above-ground biomass of winter wheat in tensift al haouz (Morocco): Application to yield gap estimation, ” Agronomy, vol. 11, no. 12, Dec. 2021, doi: 10.3390/agronomy11122480. [Google Scholar]
- J. Toumi, S. Er-Raki, J. Ezzahar, S. Khabba, L. Jarlan, and A. Chehbouni, “Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management, ” Agric Water Manag, vol. 163, pp. 219–235, Jan. 2016, doi: 10.1016/j.agwat.2015.09.007. [CrossRef] [Google Scholar]
- Y. Brouziyne, A. Abouabdillah, A. Hirich, R. Bouabid, R. Zaaboul, and L. Benaabidate, “Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios, ” Agric Syst, vol. 162, pp. 154–163, May 2018, doi: 10.1016/j.agsy.2018.01.024. [CrossRef] [Google Scholar]
- M. G. M. Ali et al., “Optimizing sowing window, cultivar choice, and plant density to boost maize yield under RCP8.5 climate scenario of CMIP5, ” Int J Biometeorol, vol. 66, no. 5, pp. 971–985, May 2022, doi: 10.1007/s00484-022-02253-x. [CrossRef] [PubMed] [Google Scholar]
- H. Mugiyo, T. Mhizha, V. G. P. Chimonyo, and T. Mabhaudhi, “Investigation of the optimum planting dates for maize varieties using a hybrid approach: A case of Hwedza, Zimbabwe, ” Heliyon, vol. 7, no. 2, Feb. 2021, doi: 10.1016/j.heliyon.2021.e06109. [CrossRef] [PubMed] [Google Scholar]
- A. M. Dilla, P. J. Smethurst, N. I. Huth, and K. M. Barry, “Plot-scale agroforestry modeling explores tree pruning and fertilizer interactions for maize production in a Faidherbia parkland, ” Forests, vol. 11, no. 11, pp. 1–15, Nov. 2020, doi: 10.3390/f11111175. [Google Scholar]
- M. P. van Loon et al., “Can yield variability be explained? Integrated assessment of maize yield gaps across smallholders in Ghana, ” Field Crops Res, vol. 236, pp. 132–144, Apr. 2019, doi: 10.1016/j.fcr.2019.03.022. [CrossRef] [Google Scholar]
- J. Wolf, K. Ouattara, and I. Supit, “Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso, ” Agric For Meteorol, vol. 214–215, pp. 208–218, Dec. 2015, doi: 10.1016/j.agrformet.2015.08.262. [CrossRef] [Google Scholar]
- M. S. Babel and E. Turyatunga, “Evaluation of climate change impacts and adaptation measures for maize cultivation in the western Uganda agro-ecological zone, ” Theor Appl Climatol, vol. 119, no. 1–2, pp. 239–254, Jan. 2015, doi: 10.1007/s00704-014-1097-z. [CrossRef] [Google Scholar]
- J. Alvar-Beltrán, A. Gobin, S. Orlandini, A. Dao, and A. D. Marta, “Climate resilience of irrigated quinoa in semi-arid West Africa, ” Clim Res, vol. 84, pp. 97–111, 2021, doi: 10.3354/cr01660. [CrossRef] [Google Scholar]
- A. C. Franke, L. N. Muelelwa, and J. M. Steyn, “Impact of climate change on yield and water use efficiencies of potato in different production regions of South Africa, ” South African Journal of Plant and Soil, vol. 37, no. 3, pp. 244–253, May 2020, doi: 10.1080/02571862.2020.1736345. [CrossRef] [Google Scholar]
- V. G. P. Chimonyo, A. T. Modi, and T. Mabhaudhi, “Assessment of sorghum–cowpea intercrop system under water-limited conditions using a decision support tool, ” Water SA, vol. 42, no. 2, pp. 316–327, Apr. 2016, doi: 10.4314/wsa.v42i2.15. [CrossRef] [Google Scholar]
- P. Laux, G. Jäckel, R. M. Tingem, and H. Kunstmann, “Impact of climate change on agricultural productivity under rainfed conditions in Cameroon-A method to improve attainable crop yields by planting date adaptations, ” Agric For Meteorol, vol. 150, no. 9, pp. 1258–1271, Aug. 2010, doi: 10.1016/j.agrformet.2010.05.008. [CrossRef] [Google Scholar]
- F. A. Mihretie et al., “Identifying low risk and profitable crop management practices for irrigated Teff production in northwestern Ethiopia, ” European Journal of Agronomy, vol. 139, Sep. 2022, doi: 10.1016/j.eja.2022.126572. [CrossRef] [Google Scholar]
- D. S. Maccarthy et al., “Climate change impact and variability on cereal productivity among smallholder farmers under future production systems in west africa, ” Sustainability (Switzerland), vol. 13, no. 9, May 2021, doi: 10.3390/su13095191. [Google Scholar]
- Food and Agriculture Organization of the United Nations, “Climate change adaptation and mitigation in the food and agriculture sector, ” Mar. 05, 2008. https://www.preventionweb.net/files/8314_HLC08bak1E.pdf (accessed Apr. 11, 2023). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.