Open Access
Issue
E3S Web Conf.
Volume 492, 2024
International Conference on Climate Nexus Perspectives: Toward Urgent, Innovative, Sustainable Natural and Technological Solutions for Water, Energy, Food and Environmental Systems (I2CNP 2023)
Article Number 04002
Number of page(s) 7
Section Climate Water Food Energy Nexus
DOI https://doi.org/10.1051/e3sconf/202449204002
Published online 20 February 2024
  1. W.M. Hanemann, The economic conception of water, in Water Crisis: Myth or Reality?, Taylor and Francis, New York, pp. 61–91 (2006). [CrossRef] [Google Scholar]
  2. World Economic Forum (WEF), Global Risks 2015, 10th ed., Geneva, Switzerland (2015). [Available at http://www.weforum.org/reports/global-risks-report-2015, last accessed 8 Nov. 2015.] [Google Scholar]
  3. I. El Ouadi and T.B.M.J. Ouarda, Climate Uncertainty Modelling in Integrated Water Resources Management: Review. The 3rd Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE3), Volume 364, (2023). [Google Scholar]
  4. W. El Hannoun, A. Zoglat, F. Badaoui, A. Amar. Detection and forecast of climate change effect on siltation using copulas. Theor Appl Climatol 148, 1615–1627 (2022). https://doi.org/10.1007/s00704022-03981-1. [CrossRef] [Google Scholar]
  5. A. Zoglat, A. Amar, F. Badaoui and L. Ait Hassou. A Copulas Approach for Forecasting the Rainfall: Advanced Intelligent Systems for Sustainable Development (AI2SD’2018), Vol 3, (2019).DOI: 10.1007/978-3-030-11881-5_20. [Google Scholar]
  6. X.M. Cai, D.C. McKinney and M.W. Rosegrant, Sustainability analysis for irrigation water management in the Aral Sea region. Agricultural Systems, 76(3): 1043-1066 (2003). [CrossRef] [Google Scholar]
  7. J. Harou, M. Pulido-Velazquez, D.E. Rosenberg, J.M. Azuara, J.R. Lund, R.E. Howitt, Hydroeconomic Models: Concepts, Design, Applications, and Future Prospects Hydro-economic Models: Concepts, Design, Applications, and Future Prospects Journal of Hydrology 375 (3-4):627-643 (2009) DOI: 10.1016/j.jhydrol.2009.06.037. [Google Scholar]
  8. X.M. Cai, D.C. McKinney and L.S. Lasdon, Integrated hydrologicagronomic-economic model for river basin management, Journal of Water Resources Planning and Management-Asce, 129(1): 4-17(2003). [Google Scholar]
  9. M. Pulido-Velazquez, J. Andreu and A. Sahuquillo. Economic Optimization of Conjunctive Use of Surface Water and Groundwater at the Basin Scale. Journal of Water Resources Planning and Management, 132(6): 454-467 (2006). [CrossRef] [Google Scholar]
  10. X.M., Cai, X.M., Implementation of holistic water resources-economic optimization models for river basin management Reflective experiences. Environmental Modelling & Software, 23(1): 2-18 (2008). [CrossRef] [Google Scholar]
  11. M. Gisser and A. Mercado, 1972. “Integration of the agricultural demand function for water and the hydrologic model of the Pecos basin”. Water Resources Research, 8 (6), 1373–1384(1972). [CrossRef] [Google Scholar]
  12. M. Gisser and A. Mercado, Economic aspects of ground water resources and replacement flows in semiarid agricultural areas, American Journal of Agricultural Economics, 55 (3), 461–466, (1973). [CrossRef] [Google Scholar]
  13. H.P. Palaro, L.K. Hotta. Using conditional copula to estimate value at risk. J. Data Sci 4:93–115, (2006). [Google Scholar]
  14. B Chu. Recovering copulas from limited information and an application to asset allocation. J Bank Finance 35(7):1824–1842 (2011). [CrossRef] [Google Scholar]
  15. J. Dissmann, E. Brechmann, C. Czado, D. Kurowicka. Selecting and estimating regular vine copulae and application to financial returns. Comput Stat Data Anal 59, (2012). https://doi.org/10.1016/j.csda.2012.08.010. [Google Scholar]
  16. E. Ivanov, A. Min, F. Ramsauer Copula-based factor models for multivariate asset returns. Econometrics 5(2):20, (2017). [CrossRef] [Google Scholar]
  17. L. Ait Hassou, F. Badaoui, O.G. Cyrille, A. Amar, A. Zoglat, E. Ezzahid. Copulas for modeling the relationship between inflation and the exchange rate. In: International work-conference on time series analysis. Springer, pp 217–228(2017). [Google Scholar]
  18. C. De Michele, G. Salvadori. A generalized pareto intensity-duration model of storm rainfall exploiting 2-copulas. J Royal Stat Soc Ser B (Methodol) 108(D2), (2003). [Google Scholar]
  19. L. Samaniego, A. Bárdossy, R. Kumar. Streamflow prediction in ungauged catchments using copulabased dissimilarity measures. Water Resour Res 46:W02506, (2010).. https://doi.org/10.1029/2008WR007695. [Google Scholar]
  20. Z. Hao, V.P. Singh. Entropy-copula method for single-site monthly streamflow simulation. Water Resources Research 48(6) (2012). [Google Scholar]
  21. Z. Hao, V.P. Singh. Modeling multisite streamflow dependence with maximum entropy copula. Water Resources Research 49(10):7139–7143, (2013). https://doi.org/10.1002/wrcr.20523. [CrossRef] [Google Scholar]
  22. T. Sugimoto, A. Bárdossy, G.J. Pegram, Cullmann Investigation of hydrological time series using copulas for detecting catchment characteristics and anthropogenic impacts. Hydrology and Earth System Sciences 20(7):2705, (2016). [CrossRef] [Google Scholar]
  23. A. Sklar. Fonctions de répartition à n dimensions et leurs marges. PublInst Stat Univ Paris (1959). [Google Scholar]
  24. P. Deheuvels. La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65(6), 274–292. 5e serie, (1979). [Google Scholar]
  25. G. E.P. Box & G.M. Jenkins. Time series analysis: forecasting and control. San Francisco, CA: HoldenDay. 1976. 575 p, (1970). [Google Scholar]
  26. R.B Nelsen. An Introduction to Copulas, 2nd edn. Springer, New York, (2006). [Google Scholar]
  27. T.M. Erhardt, C. Czado, U. Schepsmeier, . R-vine models for spatial time series with an application to daily mean temperature. Biometrics, 71, 323–332, (2015). [CrossRef] [PubMed] [Google Scholar]
  28. Vernieuwe, H.; Vandenberghe, S.; De Baets, B.; Verhoest, N. A continuous rainfall model based on vine copulas. Hydrol. Earth Syst. Sci., 19, 2685–2699 (2015). [CrossRef] [Google Scholar]
  29. Musafer, G.N.; Thompson, M.H. Non-linear optimal multivariate spatial design using spatial vine copulas. Stoch. Environ. Res. Risk Assess. 2017, 31, 551–570. [CrossRef] [Google Scholar]
  30. G. Pereira, A. Veiga. PAR(p)-vine copula based model for stochastic streamflow scenario generation. Stoch. Environ. Res. Risk Assess. 32, 833–842 (2018). [CrossRef] [Google Scholar]
  31. S. Skakun, N. Kussul, A. Shelestov, and O. Kussul. The use of satellite data for agriculture drought risk quantification in Ukraine. Geomatics, Natural Hazardsand Risk, 7(3), 901–917(2016). [CrossRef] [Google Scholar]
  32. S. Madadgar, A. Agha Kouchak, A. Farahmand, S. J. Davis, Probabilistic estimates of drought impacts on agricultural production, Geophysical Research Letters (2017).https://doi.org/10.1002/2017GL073606 [Google Scholar]
  33. R.E. Howitt, Positive Mathematical Programming. American Journal of Agricultural Economics, 77(2) : 329-342 (1995). [CrossRef] [Google Scholar]
  34. El Ouadi, D. Ouazar, M.R. Doukkali and M. Driss. Hasnaoui. Economic-Engineering Optimization to Assess Climate Change Impacts on Agriculture in Morocco, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 5, pp. 648-655 (2017). http://www.ripublication.com [Google Scholar]
  35. I. Elouadi, D. Ouazar, M. R. Doukkali and L. Elyoussfi, A Mathematical Model for Assessment of Socio Economic Impact of Climate Change on Agriculture Activities: Cases of the East of Morocco (Africa), Indian Journal of Science and Technology, Vol 10(17), (2017).DOI: 10.17485/ijst/2017/v10i17/108921 [CrossRef] [Google Scholar]
  36. I. Elouadi, D. Ouazar, L. El Youssfi, A decision support model to improve water resources management in agriculture: Evaluation of the drip irrigation efficiency in the Ait Ben Yacoub region, East of Morocco, E3S Web of Conferences, 183, 02006 (2020). [CrossRef] [EDP Sciences] [Google Scholar]
  37. Q. Paris, and R.E. Howitt. An Analysis of IllPosed Production Problems Using Maximum Entropy”. American Journal of Agricultural Economics, 80(1): 124-138 (1998). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.