Open Access
Issue |
E3S Web Conf.
Volume 494, 2024
International Conference on Ensuring Sustainable Development: Ecology, Energy, Earth Science and Agriculture (AEES2023)
|
|
---|---|---|
Article Number | 03007 | |
Number of page(s) | 10 | |
Section | Problems of the Energy Complex | |
DOI | https://doi.org/10.1051/e3sconf/202449403007 | |
Published online | 22 February 2024 |
- D. Dunikov, O. Popel, Renewable energy XXI century: Energy and economic efficiency, in Proceedings of the IV International Congress REENCON-XXI Renewable energy XXI century: Energy and economic efficiency, Skolkovo, 5-6 June, 2018, Moscow: JIVT RAS (2018) [Google Scholar]
- Artificial intelligence, https://www.siemens.com/global/en/company/stories/artificialintelligence.html [Google Scholar]
- D. Cao, J. Zhao, W. Hu, N. Yu, F. Ding, Q. Huang, Z. Chen, Deep reinforcement learning enabled physical-model-free two-timescale voltage control method for active distribution systems, IEEE Transactions on Smart Grid, 13, 149–165 (2021) DOI:10.1109/TSG.2021.3113085 [Google Scholar]
- N. Jin, F. Yang, Y. Mo, Y. Zeng, X. Zhou, K. Yan, X. Ma, Highly accurate energy consumption forecasting model based on parallel LSTM neural networks. Adv. Eng. Informatics, 51, 101442 (2022) DOI:10.1016/j.aei.2021.101442 [CrossRef] [Google Scholar]
- F. Byk, L. Myshkina, Effects of local intelligent energy systems integration. Power engineering research equipment technologytion, 24(1), 3-15 (2022) DOI:10.30724/19989903-2022-24-1-3-15 [CrossRef] [Google Scholar]
- X. Chen, G. Qu, Y. Tang, et al, Reinforcementlearning for selective key applications in power systems: Recentadvances and future challenges. IEEE Transactions on SmartGrid, 13(4), 2935-2958 (2022) DOI: 10.1109/TSG.2022.3154718 [Google Scholar]
- C. Feng, J. Zhang, W. Zhang, B.M. Hodge, Convolutional neural networks for intrahour solar forecasting based on sky image sequences. Applied Energy, 310, 118438 (2022) DOI:10.1016/j.apenergy.2021.118438 [CrossRef] [Google Scholar]
- A. Manobanda, O. Patricia, N. Granda, Electric energy demand forecasting in an oil production company using artificial neural networks. Latest Advances in Electrical Engineering, and Electronics, 933, 3-16 (2022) DOI:10.1007/978-3-031-08942-8_1 [CrossRef] [Google Scholar]
- M. Talaat, M. Elkholy, A. Alblawi, T. Said, Artificial intelligence applications for microgrids integration and management of hybrid renewable energy sources. Artificial Intelligence Review, 56, 10557-10611 (2023) DOI:10.1007/s10462-023-10410-w [CrossRef] [Google Scholar]
- M. Baghdasaryan, V. Hovhannisyan, T. Hakobyan, Evaluating the possibilities of applying an artificial neural network for control and diagnostics of the electric drive systems. National Polytechnic University of Armenia, (2022) DOI:10.53297/18293328-2022.1-9 [Google Scholar]
- M. Perez-Ramirez, G. Arroyo-Figueroa and A. Ayala, The use of a virtual reality training system to improve technical skill in the maintenance of live-line power distribution networks. Interactive Learning Environments, 29(3), 1-18 (2019) Doi: 10.1080/10494820.2019.1587636 [Google Scholar]
- J. Gonzalez Lopez, R. Jimenez Betancourt, J. Ramirez Arredondo, E. Villalvazo Laureano, F. Rodriguez Haro, Incorporating virtual reality into the teaching and training of grid-tie photovoltaic power plants design. Applied Sciences, 9, 1-12 (2019) DOI:10.3390/app9214480 [Google Scholar]
- E. Memik, S. Nikolic, The Virtual reality electrical substation field trip: Exploring student perceptions and cognitive learning. STEM Education, 1, 47-59 (2021) Doi: 10.3934/steme.2021004 [CrossRef] [Google Scholar]
- P. Palensky, M. Cvetkovic, D. Gusain, A. Joseph, Digital twins and their use in future power systems. Digital Twin, 1, 4 (2022) DOI: 10.12688/digitaltwin.17435.2 [CrossRef] [Google Scholar]
- P. Pileggi, J. Verriet, J. Broekhuijsen, С. Leeuwen, W. Wijbrandi and M. Konsman, Digital twin for cyber-physical energy systems. 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), Montreal, QC, Canada. 1-6, (2019) DOI:10.1109/MSCPES.2019.8738792 [Google Scholar]
- D. Akchurin, M. Bashirov, I. Kostikov, K. Nikolaev, Training simulation complex based on BASIS-100 PLC. Automation in Industry, 9, 30-35 (2021) DOI: 10.25728/avtprom.2021.09.04 [Google Scholar]
- A. Kurbatov, A virtual engineer will help design energy facilities, https://inscience.news/ru/article/nti/9377 [Google Scholar]
- M. Bashirov, M. Shvan, E. Akhmetshina, A. Khakimov Development of a digital twin of the training laboratory complex. Components of Scientific and Technological Progress, 6 (84), 138-141 (2023) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.