Open Access
Issue
E3S Web Conf.
Volume 495, 2024
2nd International Colloquium on Youth, Environment and Sustainability (ICYES 2023)
Article Number 02007
Number of page(s) 6
Section Ecology and Microbiology
DOI https://doi.org/10.1051/e3sconf/202449502007
Published online 23 February 2024
  1. Eisavi V, Homayouni S, Yazdi A M et al., Land cover mapping based on zrandom forest classification of multitemporal spectral and thermal images. Environmental Monitoring and Assessment, 187(5): 291. doi: 10.1007/s10661-015-4489-3 (2015). [CrossRef] [PubMed] [Google Scholar]
  2. Gottfried M, Pauli H, Futschik A et al. Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2(2): 111–115. doi: 10.1038/nclimate1329 (2012). [CrossRef] [Google Scholar]
  3. Silva, K. A. da, El-Deir, S. G., Monteiro Júnior, J. J., Santos, J. P. de O., & Silva, E. A. Analysis of vegetation dynamics using the normalized difference vegetation index (NDVI) at the archipelago of Fernando de Noronha, Pernambuco, Brazil. Interações (Campo Grande), 21(4), 885–901. (2020). [Google Scholar]
  4. Meng, Z.Q. ; Liu, M. ; Gao, C.C. ; Zhang, Y. ; She, Q.N. ; Long, L.B. ; Tu, Y. ; Yang, Y.X. Greening and browning of the coastal areas in mainland China: Spatial heterogeneity, seasonal variation and its influential factors. Ecol. Indic., 110, 105888 (2020). [CrossRef] [Google Scholar]
  5. Karaburun A. A. K. Bhandari, Estimation of C factor for soil erosion modelling using NDVI in Buyukcekmece watershed, Ozean Journal of applied sciences 3, 77-85., 2010. [Google Scholar]
  6. Chouhan R, Rao N. Vegetation detection in Multi spectral remote sensing images: protective Roleanalysis of coastal vegetation in 2004 Indian Ocean Tsunami. Geo-Information for DisasterManagement ”, Procedia Technology 6, pp., 612–621., (2012). [CrossRef] [Google Scholar]
  7. Nagaraj, A., Shears, E., de Vaan, M. Improving data access democratizes and diversifies science. Proc. Natl. Acad. Sci. 117, 23490–23498. https://doi.org/10.1073/pnas.2001682117 (2020). [CrossRef] [PubMed] [Google Scholar]
  8. .Shikhar Deep, Akansha Saklani. Urban Sprawl modeling using cellular automata. The Egyptian Journal of Remote Sensing and Space Sciences, 17, pp.179–18., 2014. [CrossRef] [Google Scholar]
  9. A.K. Bhandari, A. Kumar. Feature Extraction using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City”, Proceedings of Communication, Computing & Security. Procedia Technology Volume 6, pp. 612–621, 2012. [Google Scholar]
  10. Nageswara PPR, Shobha SV, Ramesh, KS, Somashekhar RK. Satellite -based assessment of Agricultural drought in Karnataka State, Journal of the Indian society of remote sensing. 33 (3), pp.429-434., 2005 [CrossRef] [Google Scholar]
  11. Julien, Y. & Sobrino, J. A. The Yearly Land Cover Dynamics (YLCD) method: an analysis of global vegetation from NDVI and LST parameters. Remote Sensing of Environment 113 (2), 329–334 (2009). [CrossRef] [Google Scholar]
  12. Lamchin, M., Lee, J.-Y., Lee, W.-K., Lee, E. J., Kim, M., Lim, C.-H., Choi, H.-A. & Kim, S.-R. Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. Advances in Space Research 57 (1), 64–77 (2016). [CrossRef] [Google Scholar]
  13. Zhang, Y. ; Migliavacca, M. ; Penuelas, J. ; Ju, W. Advances in hyperspectral remote sensing of vegetation traits and functions. Remote Sens. Environ. 252, 112121 (2020). [Google Scholar]
  14. Pesaresi, S. ; Mancini, A. ; Quattrini, G. ; Casavecchia, S. Mapping mediterranean forest plant associations and habitats with functional principal component analysis using Landsat 8 NDVI time series. Remote Sens, 12, 1132 (2020). [Google Scholar]
  15. Hartoyo, Adisti & Sunkar, Arzyana & Ramadani, Rahmatulloh & Faluthi, Syahlan & Hidayati, Syafitri. Normalized Difference Vegetation Index (NDVI) analysis for vegetation cover in Leuser Ecosystem area, Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity. 22. 10.13057/biodiv/d220311 (2021). [CrossRef] [Google Scholar]
  16. RJPMD (Rencana Pembangunan Jangka Menengah Daerah) Sumedang 2019-2023. [Google Scholar]
  17. RJPMD (Rencana Pembangunan Jangka Menengah Daerah) Sumedang 2015-2019. [Google Scholar]
  18. Tian, Z. ; Ren, Z. ; Wei, H. Driving mechanism of spatiotemporal evolution of vegetation in the Yellow River Basin from 2000 to 2020. Environ. Sci., 43, 743–751. (2022). [Google Scholar]
  19. Lahoti, S.A., Withaningsih, S., Lomente, L. et al. Correction to: Exploring bioproduction systems in socio-ecological production landscapes and seascapes in Asia through solution scanning using the Nature Futures Framework. Sustain Sci . https://doi.org/10.1007/s11625-023-01359-4 (2023). [Google Scholar]
  20. Wahyunto, Masganti, Dariah, A., Nurhayati, & Yusuf, R. Karakteristik dan Potensi Pemanfaatan Lahan Gambut Terdegradasi di Provinsi Riau. Jurnal Sumber Daya Lahan, 8, 59-66 (2014). [Google Scholar]
  21. Krishnamurthy., Bhat, Irfan Manzoor. , Nusrath, Asima. Normalised Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) Analysis of Chamarajnagara District Karnataka India Using Landsatdata. International Journal of Research in Engineering and Science. 11(1): 143-148 (2023). [Google Scholar]
  22. Sitorus, S. R. P., Patria, S. I. D., & Panuju, D. R. Analisis Perubahan Penggunaan Lahan Ruang Terbuka Hijau di Jakarta Timur. Jurnal Lanskap Indonesia, 4(2). https://doi.org/doi.org/10.29244/jli.2012.4.2.%25p. (2012). [Google Scholar]
  23. Gandhi, G. Meera. , Parthiban S., Thummalu, Nagaraj. , and Christy, A. Ndvi: Vegetation Change Detection Using Remote Sensing and Gis – A Case Study of Vellore District. Procedia Computer Science. Volume 57, 2015, Pages 1199-1210 https://doi.org/10.1016/j.procs.2015.07.415 (2015) [CrossRef] [Google Scholar]
  24. Lemenkova, P., 2015. Analysis of Landsat NDVI time series for detecting degradation of vegetation. In: Geoecology and Sustainable Use of Mineral Resources, from Science to Practice Proceedings of the 3 Rd International Conference of Young Scientists, pp. 978–983. [Google Scholar]
  25. Stow, D.A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F., Houston, S., Racine, C., Sturm., M., Tape, K., Hinzman, L., Yoshikawa, K., Tweedie, C., Noyle, B., Silapaswan., C., Douglas, D., Griffith, B., Jia, G., Epstein, H., Walker, D., Daeschner, S., Petersen, A., Zhou, L., & Myneni, R. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems // Remote Sensing of Environment. – no.89. - 281–308. (2004). [CrossRef] [Google Scholar]
  26. Rouse, J.W., Haas, R.H., Scheel, J.A., Deering, D.W., 1974. Monitoring vegetation systems in the great plains with ERTS. In: Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, vol. 1, pp. 48–62. https://ntrs.nasa.gov/citations/19740022614. [Google Scholar]
  27. Carlson, T.N., Ripley, D.A., 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Rem. Sens. Environ. 62, 241–252. [CrossRef] [Google Scholar]
  28. Fearnside P M. Brazil’s Cuiabá- Santarém (BR-163) Highway: the environmental cost of paving a soybean corridor through the Amazon The Environmental Management 39 (5) pp 601-614 (2007). [Google Scholar]
  29. J. W. Hatulesila, G. Mardiatmoko, and I. Irwanto, Analisis Nilai Indeks Kehijauan (NDVI) Pada Pola Ruang Kota Ambon, Provinsi Maluku” J. Hutan Pulau-Pulau Kecil, 3(1), pp. 55–67, Apr. 2019, doi: 10.30598/jhppk.3.1.55 (2019). [Google Scholar]
  30. H. Salakory, M., Rakuasa, Modeling of Cellular Automata Markov Chain for predicting the carrying capacity of Ambon City, J. Pengelolaan Sumberd. Alam dan Lingkung., 12(2) pp. 372–387, doi: https://doi.org/10.29244/jpsl.12.2.372-387 (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.