Open Access
Issue |
E3S Web Conf.
Volume 495, 2024
2nd International Colloquium on Youth, Environment and Sustainability (ICYES 2023)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 9 | |
Section | Ecology and Microbiology | |
DOI | https://doi.org/10.1051/e3sconf/202449502006 | |
Published online | 23 February 2024 |
- J. Bauhus, P.K. Khanna, The significance of microbial biomass and activity in forest soils, Going Underground - Ecological Studies in Forest Soils (1999) 77–110. [Google Scholar]
- B. Klimek, M. Chodak, M. Jaźwa, M. Niklińska, Functional diversity of soil microbial communities in boreal and temperate Scots pine forests, Eur J For Res 135 (2016) 731–742. https://doi.org/10.1007/s10342-016-0968-5. [CrossRef] [Google Scholar]
- D.A. Wardle, R.D. Bardgett, J.N. Klironomos, H. Setala, W.H. Van Der Putten, D.H. Wall, Ecological linkages between aboveground and belowground biota, Science (1979) 304 (2004) 1629–1633. https://doi.org/10.1126/science.1094875. [Google Scholar]
- J. Six, S.D. Frey, R.K. Thiet, K.M. Batten, Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems, Soil Science Society of America Journal 70 (2006) 555–569. https://doi.org/10.2136/sssaj2004.0347. [CrossRef] [Google Scholar]
- C.L. Tucker, J. Bell, E. Pendall, K. Ogle, Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming?, Glob Chang Biol 19 (2013) 252–263. https://doi.org/10.1111/gcb.12036. [CrossRef] [PubMed] [Google Scholar]
- Q. Zheng, Y. Hu, S. Zhang, L. Noll, T. Bockle, A. Richter, W. Wanek, Growth explains microbial carbon use efficiency across soils differing in land use and geology, Soil Biol Biochem 128 (2019) 45–55. https://doi.org/10.1016/j.soilbio.2018.10.006. [CrossRef] [PubMed] [Google Scholar]
- A. Bani, S. Pioli, M. Ventura, P. Panzacchi, L. Borruso, R. Tognetti, G. Tonon, L. Brusetti, The role of microbial community in the decomposition of leaf litter and deadwood, Applied Soil Ecology 126 (2018) 75–84. https://doi.org/10.1016/j.apsoil.2018.02.017. [CrossRef] [Google Scholar]
- S. Herrmann, J. Bauhus, Effects of moisture, temperature and decomposition stage on respirational carbon loss from coarse woody debris (CWD) of important European tree species, Scand J For Res 28 (2013) 346–357. https://doi.org/10.1080/02827581.2012.747622. [CrossRef] [Google Scholar]
- S. Herrmann, T. Kahl, J. Bauhus, Decomposition dynamics of coarse woody debris of three important central European tree species, For Ecosyst 2 (2015). https://doi.org/10.1186/s40663-015-0052-5. [CrossRef] [Google Scholar]
- U.N. Nielsen, G.H.R. Osler, C.D. Campbell, D.F.R.P. Burslem, R. van der Wal, The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale, J Biogeogr 37 (2010) 1317–1328. https://doi.org/10.1111/j.1365-2699.2010.02281.x. [CrossRef] [Google Scholar]
- D. Sun, Q. Bi, K. Li, P. Dai, Y. Yu, W. Zhou, T. Lv, X. Liu, J. Zhu, Q. Zhang, C. Jin, L. Lu, X. Lin, Significance of temperature and water availability for soil phosphorus transformation and microbial community composition as affected by fertilizer sources, Biol Fertil Soils 54 (2018) 229–241. https://doi.org/10.1007/s00374-017-1252-7. [CrossRef] [Google Scholar]
- W. Zhou, D. Hui, W. Shen, Effects of soil moisture on the temperature sensitivity of soil heterotrophic respiration: A laboratory incubation study, PLoS One 9 (2014). https://doi.org/10.1371/journal.pone.0092531. [Google Scholar]
- C.S. Sheik, W.H. Beasley, M.S. Elshahed, X. Zhou, Y. Luo, L.R. Krumholz, Effect of warming and drought on grassland microbial communities, ISME Journal 5 (2011) 1692–1700. https://doi.org/10.1038/ismej.2011.32. [CrossRef] [PubMed] [Google Scholar]
- Y. Song, C. Song, J. Ren, X. Ma, W. Tan, X. Wang, J. Gao, A. Hou, Short-Term Response of the Soil Microbial Abundances and Enzyme Activities to Experimental Warming in a Boreal Peatland in Northeast China, Sustainability (Switzerland) 11 (2019). https://doi.org/10.3390/su11030590. [Google Scholar]
- Z. Yang, S. Yang, J.D. Van Nostrand, J. Zhou, W. Fang, Q. Qi, Y. Liu, S.D. Wullschleger, L. Liang, D.E. Graham, Y. Yang, B. Gu, Microbial community and functional gene changes in Arctic tundra soils in a microcosm warming experiment, Front Microbiol 8 (2017) 1–11. https://doi.org/10.3389/fmicb.2017.01741. [PubMed] [Google Scholar]
- M. Pettersson, Factors Affecting Rates of Change in Soil Bacterial Communities, 2004. [Google Scholar]
- N. Fierer, R.B. Jackson, The diversity and biogeography of soil bacterial communities, Proc Natl Acad Sci U S A 103 (2006) 626–631. https://doi.org/10.1073/pnas.0507535103. [CrossRef] [PubMed] [Google Scholar]
- R.I. Griffiths, B.C. Thomson, P. James, T. Bell, M. Bailey, A.S. Whiteley, The bacterial biogeography of British soils, Environ Microbiol 13 (2011) 1642–1654. https://doi.org/10.1111/j.1462-2920.2011.02480.x. [CrossRef] [PubMed] [Google Scholar]
- W.J. Landesman, D.M. Nelson, M.C. Fitzpatrick, Soil properties and tree species drive s-diversity of soil bacterial communities, Soil Biol Biochem 76 (2014) 201–209. https://doi.org/10.1016/j.soilbio.2014.05.025. [CrossRef] [Google Scholar]
- C.L. Lauber, M. Hamady, R. Knight, N. Fierer, Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale, Appl Environ Microbiol 75 (2009) 5111–5120. https://doi.org/10.1128/AEM.00335-09. [CrossRef] [PubMed] [Google Scholar]
- L. Augusto, J. Ranger, D. Binkley, A. Rothe, Impact of several common tree species of European temperate forests on soil fertility, Ann For Sci 64 (2002) 233–253. https://doi.org/10.1051/forest. [CrossRef] [EDP Sciences] [Google Scholar]
- S.D. Allison, M.D. Wallenstein, M.A. Bradford, Soil-carbon response to warming dependent on microbial physiology, Nat Geosci 3 (2010) 336–340. https://doi.org/10.1038/ngeo846. [CrossRef] [Google Scholar]
- E.A. Davidson, I.A. Janssens, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature 440 (2006) 165–173. https://doi.org/10.1038/nature04514. [CrossRef] [PubMed] [Google Scholar]
- G.B. De Deyn, J.H.C. Cornelissen, R.D. Bardgett, Plant functional traits and soil carbon sequestration in contrasting biomes, Ecol Lett 11 (2008) 516–531. https://doi.org/10.1111/j.1461-0248.2008.01164.x. [CrossRef] [PubMed] [Google Scholar]
- W. Knorr, I.C. Prentice, J.I. House, E.A. Holland, Long-term sensitivity of soil carbon turnover to warming, Nature 433 (2005) 298–301. https://doi.org/10.1038/nature03226. [CrossRef] [PubMed] [Google Scholar]
- A. Schindlbacher, A. Rodler, M. Kuffner, B. Kitzler, A. Sessitsch, S. Zechmeister-Boltenstern, Experimental warming effects on the microbial community of a temperate mountain forest soil, Soil Biol Biochem 43 (2011) 1417–1425. https://doi.org/10.1016/j.soilbio.2011.03.005. [CrossRef] [PubMed] [Google Scholar]
- X. Zhang, S. Xu, C. Li, L. Zhao, H. Feng, G. Yue, Z. Ren, G. Cheng, The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau, Res Microbiol 165 (2014) 128–139. https://doi.org/10.1016/j.resmic.2014.01.002. [CrossRef] [PubMed] [Google Scholar]
- M. Chodak, M. Niklińska, E. Śliwińska, Chemical and microbial properties of sandy mine soils afforested with scots pine and silver birch, Pol J Environ Stud 20 (2011) 285–291. [Google Scholar]
- B. Klimek, M. Chodak, M. Jaźwa, M. Niklińska, Functional diversity of soil microbial communities in boreal and temperate Scots pine forests, Eur J For Res 135 (2016) 731–742. https://doi.org/10.1007/s10342-016-0968-5. [CrossRef] [Google Scholar]
- D.L. Rowell, Soil Science: Methods and Applications, Longman, 1994. [Google Scholar]
- B. Pohland, B. Owen, TAS. technical bulletin Biolog, (2019). [Google Scholar]
- J. Zak, M. Willig, D. Moorhead, H. Wildman, Functional diversity of microbial communities: a quantitative approach, Soil Biol Biochem 26 (1994) 1101–1108. [CrossRef] [Google Scholar]
- M. Seneviratne, A. Doolette, P. Marschner, Impact of a short heating event followed by rewetting on soil respiration and nutrient availability is not only due to soil drying during heating, Biol Fertil Soils 55 (2019) 553–564. https://doi.org/10.1007/s00374-019-01372-9. [CrossRef] [Google Scholar]
- O. Kiikkila, V. Kitunen, A. Smolander, Dissolved soil organic matter from surface organic horizons under birch and conifers: Degradation in relation to chemical characteristics, Soil Biol Biochem 38 (2006) 737–746. https://doi.org/10.1016/j.soilbio.2005.06.024. [CrossRef] [Google Scholar]
- R. Georg Joergensen, S. Scheu, Response of soil microorganisms to the addition of carbon, nitrogen and phosphorus in a forest Rendzina, Soil Biol Biochem 31 (1999) 859–866.https://doi.org/10.1016/S0038-0717(98)00185-0. [CrossRef] [Google Scholar]
- F. Demoling, D. Figueroa, E. Baath, Comparison of factors limiting bacterial growth in different soils, Soil Biol Biochem 39 (2007) 2485–2495. https://doi.org/10.1016/j.soilbio.2007.05.002. [CrossRef] [Google Scholar]
- B. Klimek, M. Chodak, M. Jaźwa, A. Solak, A. Tarasek, M. Niklińska, The relationship between soil bacteria substrate utilisation patterns and the vegetation structure in temperate forests, Eur J For Res 135 (2016) 179–189. https://doi.org/10.1007/s10342-015-0929-4. [CrossRef] [Google Scholar]
- X. Zhang, S. Xu, C. Li, L. Zhao, H. Feng, G. Yue, Z. Ren, G. Cheng, The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau, Res Microbiol 165 (2014) 128–139. https://doi.org/10.1016/j.resmic.2014.01.002. [CrossRef] [PubMed] [Google Scholar]
- H. Chu, N. Fierer, C.L. Lauber, J.G. Caporaso, R. Knight, P. Grogan, Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes, Environ Microbiol 12 (2010) 2998–3006. https://doi.org/10.1111/j.1462-2920.2010.02277.x. [CrossRef] [PubMed] [Google Scholar]
- H. Chu, P. Grogan, Soil microbial biomass, nutrient availability and nitrogen mineralization potential among vegetation-types in a low arctic tundra landscape, Plant Soil 329 (2010) 411–420. https://doi.org/10.1007/s11104-009-0167-y. [CrossRef] [Google Scholar]
- Y. Ge, C. Chen, Z. Xu, S.M. Eldridge, K.Y. Chan, Y. He, J.Z. He, Carbon/nitrogen ratio as a major factor for predicting the effects of organic wastes on soil bacterial communities assessed by DNA-based molecular techniques, Environmental Science and Pollution Research 17 (2010) 807–815. https://doi.org/10.1007/s11356-009-0185-6. [CrossRef] [PubMed] [Google Scholar]
- X. Lin, S. Green, M.M. Tfaily, O. Prakash, K.T. Konstantinidis, J.E. Corbett, J.P. Chanton, W.T. Cooper, J.E. Kostka, Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the glacial lake agassiz peatland, Appl Environ Microbiol 78 (2012) 7023–7031. https://doi.org/10.1128/AEM.01750-12. [CrossRef] [PubMed] [Google Scholar]
- M. Chodak, M. Gołebiewski, J. Morawska-Płoskonka, K. Kuduk, M. Niklińska, Diversity of microorganisms from forest soils differently polluted with heavy metals, Applied Soil Ecology 64 (2013) 7–14. https://doi.org/10.1016/j.apsoil.2012.11.004. [CrossRef] [Google Scholar]
- M. Chodak, M. Niklińska, Effect of texture and tree species on microbial properties of mine soils, Applied Soil Ecology 46 (2010) 268–275. https://doi.org/10.1016/j.apsoil.2010.08.002. [CrossRef] [Google Scholar]
- B. Adamczyk, V. Kitunen, A. Smolander, Protein precipitation by tannins in soil organic horizon and vegetation in relation to tree species, Biol Fertil Soils 45 (2008) 55–64. https://doi.org/10.1007/s00374-008-0308-0. [CrossRef] [Google Scholar]
- D. Fernandez-Calvino, J. Rousk, P.C. Brookes, E. Baath, Bacterial pH-optima for growth track soil pH, but are higher than expected at low pH, Soil Biol Biochem 43 (2011) 1569–1575. https://doi.org/10.1016/j.soilbio.2011.04.007. [CrossRef] [Google Scholar]
- J. Rousk, E. Baath, P.C. Brookes, C.L. Lauber, C. Lozupone, J.G. Caporaso, R. Knight, N. Fierer, Soil bacterial and fungal communities across a pH gradient in an arable soil, ISME Journal 4 (2010) 1340–1351. https://doi.org/10.1038/ismej.2010.58. [CrossRef] [PubMed] [Google Scholar]
- S.J. Kemmitt, D. Wright, K.W.T. Goulding, D.L. Jones, pH regulation of carbon and nitrogen dynamics in two agricultural soils, Soil Biol Biochem 38 (2006) 898–911. https://doi.org/10.1016/j.soilbio.2005.08.006. [CrossRef] [Google Scholar]
- Schmidt M W I, Torn M S, Abiven S, Dittmar T, Guggenberger G, Janssens I A, Kleber M, Kogel-Knabner I, Lehmann J, Manning D A C, Nannipieri P, Rasse D P, Weiner S, Trumbore S E. 2014. Persistence of soil organic matter as an ecosystem property. Nature. 478: 49–56 [Google Scholar]
- Pietikainen, J., Pettersson, M., & Baath, E. (2005). Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiology Ecology, 52(1), 49–58. https://doi.org/10.1016/j.femsec.2004.10.002 [CrossRef] [PubMed] [Google Scholar]
- Pettersson, M., & Baath, E. (2003). Temperature-dependent changes in the soil bacterial community in limed and unlimed soil. FEMS Microbiology Ecology, 45(1), 13–21. https://doi.org/10.1016/S0168-6496(03)00106-5 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.