Open Access
Issue |
E3S Web Conf.
Volume 497, 2024
5th International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2024)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 11 | |
Section | Civil Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202449702001 | |
Published online | 07 March 2024 |
- Anas, S. M., Shariq, M., Alam, M., & Umair, M., Evaluation of Critical Damage Location of Contact Blast on Conventionally Reinforced One-way Square Concrete Slab applying CEL-FEM Blast Modeling Technique. International Journal of Protective Structures 13(4), 672-715 (2022) [CrossRef] [Google Scholar]
- Anas, S. M. & Alam, M. Close-range Blast Response Prediction of Hollow Circular Concrete Columns with Varied Hollowness Ratio, Arrangement of Compression Steel, and Confining Stirrups’ Spacing. Iran J. Sci. Technol. Trans. Civ. Eng. 47, 221–249 (2023) [CrossRef] [Google Scholar]
- Anas, S. M., Alam, M., & Umair, M. Performance of (1) concrete-filled double-skin steel tube with and without core concrete, and (2) concrete-filled steel tubular axially loaded composite columns under close-in blast. International Journal of Protective Structures 14(3), 299-334 (2023) [CrossRef] [Google Scholar]
- Anas, S. M., Alam, M., & Umair, M. Experimental and Numerical Investigations on Performance of Reinforced Concrete Slabs under Explosive-induced Air-blast Loading: A state-of-the-art review. Structures 31, 428-461 (2021) [CrossRef] [Google Scholar]
- Anas, S. M., Alam, M., & Umair, M. Performance of one-way concrete slabs reinforced with conventional and polymer re-bars under air-blast loading. Lecture Notes in Civil Engineering 135, 179-191 (2020) [CrossRef] [Google Scholar]
- Ahmadi, E., Alam, M., & Anas, S. M. Blast Performance of RCC Slab and Influence of Its Design Parameters. Lecture Notes in Civil Engineering 202, 389-402 (2021) [CrossRef] [Google Scholar]
- Anas, S. M., Ansari, Md. I., & Alam, M. Performance of masonry heritage building under air-blast pressure without and with ground shock. Australian Journal of Structural Engineering 21(4), 329-344 (2020) [CrossRef] [Google Scholar]
- Anas, S. M., Alam, M., & Umair, M. Performance of on-ground double-roof RCC shelter with energy absorption layers under close-in air-blast loading. Asian Journal of Civil Engineering 22, 1525-1549 (2021) [CrossRef] [Google Scholar]
- Anas, S. M., Alam, M., & Umair, M. Air-blast and ground shockwave parameters, shallow underground blasting, on the ground and buried shallow underground blast-resistant shelters: A review. International Journal of Protective Structures 13(1), 99-139 (2021) [Google Scholar]
- Anas, S. M., & Alam, M. Comparison of Existing Empirical Equations for Blast Peak Positive Overpressure from Spherical Free Air and Hemispherical Surface Bursts. Iranian Journal of Science and Technology, Transactions of Civil Engineering 46, 965-984 (2021) [Google Scholar]
- Shariq, M., Alam, M., Husain, A., & Anas, S. M. Jacketing with steel angle sections and wide battens of RC column and its influence on blast performance. Asian Journal of Civil Engineering 23, 487-500 (2022) [CrossRef] [Google Scholar]
- Shariq, M., Saifi, F., Alam, M., & Anas, S. M. Effect of Concrete Strength on the Dynamic Behavior of Axially Loaded Reinforced Concrete Column Subjected to Close-range Explosive Loading. Materials Today: Proceedings 87, 1-8 (2023) [CrossRef] [Google Scholar]
- Ul-Ain, Q., Alam, M., & Anas, S. M. Response of Two-Way RCC Slab with Unconventionally Placed Reinforcements Under Contact Blast Loading. Structural Integrity 27, 219-238 (2022) [CrossRef] [Google Scholar]
- Aamir, M., Alam, M., Anas, S. M., Uriayer, F. A., Umair, M., & Tahzeeb, R. Numerical Simulation of a Bowstring Steel Highway Girder Bridge Response to Blast Loads: Model Development and Anti-Blast Performance Prediction. International Journal of Reliability and Safety 16, 218-236 (2023) [Google Scholar]
- Tahzeeb, R., Alam, M., Anas, S. M., & Muddassir, S. M. Dynamic Response of CFST Column with In-plane Cross-reinforcement and Partial CFRP Wrapping upon Contact Blast. Innovative Infrastructure Solutions 8, 241 (2023) [CrossRef] [Google Scholar]
- Al-Dala’ien, R. N., Syamsir, A., Usman, F., & Abdullah M. J. The effect of the W-shape stirrups shear reinforcement on the dynamic behavior of RC flat solid slab subjected to the low-velocity impact loading. Results in Engineering 19, 101353 (2023) [CrossRef] [Google Scholar]
- Al-Dala’ien, R. N., Syamsir, A., Abu Bakar, M. S., Usman, F., & Abdullah, M. J. Failure Modes Behavior of Different Strengthening Types of RC Slabs Subjected to Low-Velocity Impact Loading: A Review. Journal of Composites Science 7, 246 (2023) [CrossRef] [Google Scholar]
- Anas, S. M., Shariq, M., & Alam, M. Performance of Axially Loaded Square RC Columns with Single/Double Confinement Layer(s) and Strengthened with C-FRP Wrapping under Close-in Blast. Materials Today: Proceedings 58(4), 1128-1141 (2022) [CrossRef] [Google Scholar]
- Anas, S. M., Alam, M., & Umair, M. Strengthening of Braced Unreinforced Brick Masonry Wall with (i) C-FRP Wrapping, and (ii) Steel Angle-Strip System under Blast Loading. Materials Today: Proceedings 58(4), 1181-1198 (2022) [CrossRef] [Google Scholar]
- Anas, S. M., Shariq, M., Alam, M., & Umair, M. (2023). Modeling of Crashworthy Foam Mounted Braced Unreinforced Brick Masonry Wall and Prediction of Anti-Blast Performance. International Journal of Protective Structures (2023) doi:10.1177/20414196231164432 [Google Scholar]
- Anas, S. M., Al-Dala’ien, R. N., Tahzeeb, R., Shariq, M., & Alam, M. A. Concise Overview of Numerical Simulation Tools and Techniques for Anti-Explosion Response Prediction of Infrastructures and Facilities. E3S Web of Conferences 434, 02023 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
- Anas, S. M., Al-Dala’ien, R. N., Alam, M., & Umair, M. (2023). Damage Prediction of Monolithic and Non-Monolithic Braced Unreinforced Brick Masonry Walls under Explosion Loadings. E3S Web of Conferences 434, 02034 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
- Anas, S. M., Alam, M., & Shariq, M. Damage Response of Conventionally Reinforced Two-way Spanning Concrete Slab under Eccentric Impacting Drop Weight Loading. Defense Technology 19, 12-34 (2023) [CrossRef] [Google Scholar]
- Anas, S. M., Shariq, M., Alam, M., Yosri, A. M., Mohamed, A., & AbdelMongy, M. Influence of Supports on the Low-Velocity Impact Response of Square RC Slab of Standard Concrete and Ultra-High Performance Concrete: FEM-Based Computational Analysis. Buildings 13(5), 1220 (2023) [CrossRef] [Google Scholar]
- Anas, S. M., Alam, M., & Saidani, M. Prediction of Impact Response of Square Reinforced Concrete (RC) Slab with Square/Circular Opening under Drop-weight Impact using FEM Simulation. Asian J Civ Eng 25, 2189–2208 (2024) [CrossRef] [Google Scholar]
- Kingery C N & Bulmash G. Air blast parameters from TNT spherical air burst and hemispherical surface burst. Ballistic Research Laboratories, U.S. (1984) [Google Scholar]
- Wu, C., & Hao, H. Modelling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions. International Journal of Impact Engineering 31(6), 699-717 (2005) [CrossRef] [Google Scholar]
- Hao, H., Hao, Y., Li, J., & Chen, W. Review of the current practices in blast-resistant analysis and design of concrete structures. Advances in Structural Engineering 19(8), 1193-1223 (2016) [CrossRef] [Google Scholar]
- UFC 3-340-02, Structures to resist the effects of accidental explosions. Technical Manual, Unified Facilities Criteria UFC 3-340-02, U.S. Army Corporations of Engineers, U.S. (2008) [Google Scholar]
- TM 5-1300 Structures to resist the effects of accidental explosions. Technical Manual, Joint Department of the Army, the Navy and the Air Force Technical Manual, Department of Defence Explosives Safety Board, Alexandria, Virginia (1990) [Google Scholar]
- ASCE/SEI 59-11Blast protection of buildings. Technical Manual, American Society of Civil Engineers, U.S. (2011). [Google Scholar]
- IS 4991, Criteria for blast resistant design of structures for explosions above ground. Design Standard, Bureau of Indian Standards, New Delhi, India (1968) [Google Scholar]
- Strehlow, R. A. Accidental Explosions: Recent research has significantly increased our understanding of the causes and behavior of accidental explosions and has produced new and more effective safety measures. American Scientist 68(4), 420-428 (1980) [Google Scholar]
- Salzano, E. Explosion (overpressure) driven domino effect. Methods in Chemical Process Safety 5, 119-133 (2021) [CrossRef] [Google Scholar]
- Lavoisier, A. Elements of Chemistry. Transi. R. Kerr. Reprint. New York: Dover (1789) [Google Scholar]
- Baker, W. E. Explosions in Air. Univ. of Texas Press, Texas (1973). [Google Scholar]
- Baker, W. E., J. J. Kulesz, R. E. Ricker, R. L. Bessey, P. S. Westine, V. B. Parr, & G. A. Oldham. Workbook for Predicting Pressure Wave and Fragment Effects of Exploding Propellant Tanks and Gas Storage Vessels. NASA CR-134906. NASA Lewis Research Center, U.S. (1975) [Google Scholar]
- Baker, W. E., P. H. Cox, P. S. Westine, J. J. Kulesz, & R. A. Strehlow, A Short Course on Explosions Hazards Evaluation, Southwest Research Institute, San Antonio (1978) [Google Scholar]
- Baker, W. E., P. S. Westine, & F. T. Dodge. Similarity Methods in Engineering Dynamics: Theory and Practice of Scale Modeling, Rochelle Park, Spartan Books, NJ (1973) [Google Scholar]
- Valsamos, G., Larcher, M., & Casadei, F. Beirut explosion 2020: A case study for a large-scale urban blast simulation. Safety Science 137, 105190 (2021) [CrossRef] [Google Scholar]
- Ul-Ain, Q., Alam, M., and Anas, S. M. Behavior of Ordinary Load-Bearing Masonry Structure Under Distant Large Explosion, Beirut Scenario. Lecture Notes in Civil Engineering 202, 239-253 (2021) [CrossRef] [Google Scholar]
- Diaz, J. S. Explosion analysis from images: Trinity and Beirut. Eur. J. Phys. 42, 035803 (2021) [CrossRef] [Google Scholar]
- Pasman, H. J., Foucher, C., Park, C., Quddus, N., & Laboureur, D. Beirut ammonium nitrate explosion: Are not we really learning anything?. Process Safety Progress 39(4), e12203 (2020) [CrossRef] [Google Scholar]
- Stennett, C., Gaulter, S., & Akhavan, J. An estimate of the TNT-Equivalent net explosion quantity (NEQ) of the Beirut port explosion using public-available tools and data. Propellants, Explosives, Pyrotechnics 45, 1675–1679 (2020) [CrossRef] [Google Scholar]
- Pilger, C., Gaebler, P., Hupe, P. et al. Yield estimation of the 2020 Beirut explosion using open access waveform and remote sensing data. Sci Rep 11, 14144 (2021) [CrossRef] [PubMed] [Google Scholar]
- Mohr, L., Benauer, R., Leitl, P., & Fraundorfer, F. Damage estimation of explosions in urban environments by simulation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/ W8, 2019 – GeoInformation for Disaster Management, Prague, Czech Republic (2019) [Google Scholar]
- Goel, D. M. & Matsagar, A. V. Blast-resistant design of structures. Practice Periodical on Structural Design and Construction 19(2), 040140071-9 (2014) [CrossRef] [Google Scholar]
- Siddiqui, I. J., & Ahmad, S. “Impulsive loading on a concrete structure”. Proceedings of the Institution of Civil Engineers, Structures & Buildings 160(4), 231-241 (2007) [CrossRef] [Google Scholar]
- Sadovskiy, M. A. Mechanical effects of air shock waves from explosions according to experiments. Selected works: Geophysics and physics of explosion, Nauka Press, Moscow (2004) [Google Scholar]
- Swisdak, M. M. Simplified kingery air-blast calculations. Minutes of the Twenty Sixth DoD Explosives Safety Seminar, Maryland (1994) [Google Scholar]
- Slawson, R. T. Vulnerability evaluation of the keyworker blast shelter. Technical Report SL-87-10, Department of the Army, Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi (1987) [Google Scholar]
- Mills, C. A. The design of concrete structure to resist explosions and weapon effects. Proceedings of the 1st International Conference on Concrete for Hazard Protections, pp. 61-73 (1987) [Google Scholar]
- Low, H. Y., & Hao, H. Reliability analysis of reinforced concrete slabs under explosive loading. Structural Safety 23(2), 157-178 (2001) [CrossRef] [Google Scholar]
- Langefors, U., & Kihlstrom, B. The modern technique of rock blasting. 3rd Edition, Halsted Press, John Wiley & Sons, New York, U.S.A. (1978) [Google Scholar]
- Kinney, G. F., & Graham, K. J. Explosive shocks in air. Springer-Verlag, Berlin and New York (1985) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.