Open Access
Issue
E3S Web Conf.
Volume 497, 2024
5th International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2024)
Article Number 02002
Number of page(s) 15
Section Civil Engineering
DOI https://doi.org/10.1051/e3sconf/202449702002
Published online 07 March 2024
  1. Abaqus CAE, “Damage Plasticity, explicit platform, material library, interactions, constraints, boundary conditions, loads, post-processing”, Help & Learning manual, ABAQUS DS-SIMULIA. [Google Scholar]
  2. Drucker, D. C., & Prager, W. Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics 10(2), 157-165 (1952) [CrossRef] [Google Scholar]
  3. Lubliner, J., Oliver, J., Oller, S., & Onate, E. A plastic-damage model for concrete. International Journal of Solids and Structures 25(3), 299-326 (1989) [CrossRef] [Google Scholar]
  4. Lee, J., & Fenves, L. G. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics 124(8), 892-900 (1998) [CrossRef] [Google Scholar]
  5. Mazars, J. A description of micro– and macroscale damage of concrete structures. Engineering Fracture Mechanics 25(5), 729-737 (1986) [CrossRef] [Google Scholar]
  6. Ohtani, Y., & Chen, W. F. Multiple Hardening Plasticity for Concrete Materials. Journal of Engineering Mechanics 114(11), 1890-1910 (1988) [CrossRef] [Google Scholar]
  7. Mazars, J., & Pijaudier‐Cabot, G. Continuum Damage Theory—Application to Concrete. Journal of Engineering Mechanics 115(2), 345-365 (1989) [CrossRef] [Google Scholar]
  8. Valente, M., & Milani, G. Non-linear dynamic and static analyses on eight historical masonry towers in the north-east of Italy. Engineering Structures, Elsevier, 114(1), pp. 241–270, (2016). DOI: 10.1016/j.engstruct.2016.02.004. [Google Scholar]
  9. Valente, M., & Milani, G. Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM. Construction and Building Materials 108(1), 74–104 (2016) [CrossRef] [Google Scholar]
  10. Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, B. S. M., & Karimzade, K. Simplified damage plasticity model for concrete. Structural Engineering International 27(1), 68-78 (2017) [CrossRef] [Google Scholar]
  11. Hillerborg, A., Modéer, M., & Petersson, P. E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6(6), 773-781 (1976) [CrossRef] [Google Scholar]
  12. Kmiecik, P., & KamiŃSki, M. Modelling of reinforced concrete structures and composite 465 structures with concrete strength degradation taken into consideration. Archives of Civil and Mechanical Engineering 11(3), 623-636 (2011) [CrossRef] [Google Scholar]
  13. Willam, K. J. E. P. W. Constitutive model for the triaxial behaviour of concrete. Proc. International Association for Bridge and Structural Engineering 19, 1-30 (1975) [Google Scholar]
  14. Ottosen, N. S. A failure criterion for concrete. Journal of the Engineering Mechanics Division 103(4), 527-535 (1977) [CrossRef] [Google Scholar]
  15. Duvaut, G., & Lions, J. L. Introduction to Plasticity. In: G. Duvaut & J. L. Lions (Eds.), Inequalities in Mechanics and Physics, Springer Berlin Heidelberg, Heidelberg, Berlin (1976) [CrossRef] [Google Scholar]
  16. Pereira, J. M., Campos, J., & Lourenco, P. B. Experimental study on masonry infill walls under blast loading. In: Proceedings of the 9th International Masonry Conference, University of Minho, Guimarães, Portugal (2014) [Google Scholar]
  17. Pereira, J. M., Campos, J., & Lourenco, P. B. Masonry infill walls under blast loading using confined underwater blast wave generators (WBWG). Engineering Structures 92, 69-83 (2015) [CrossRef] [Google Scholar]
  18. Anas, S. M., Alam, M., & Umair, M. Experimental and Numerical Investigations on Performance of Reinforced Concrete Slabs under Explosive-induced Air-blast Loading: A state-of-the-art review. Structures 31 428-461 (2021) [CrossRef] [Google Scholar]
  19. Anas, S. M., Shariq, M., Alam, M., & Umair, M. Evaluation of Critical Damage Location of Contact Blast on Conventionally Reinforced One-way Square Concrete Slab applying CEL-FEM Blast Modeling Technique. International Journal of Protective Structures 13(4), 672-715 (2022) [CrossRef] [Google Scholar]
  20. Anas, S. M. & Alam, M. (2022). Close-range Blast Response Prediction of Hollow Circular Concrete Columns with Varied Hollowness Ratio, Arrangement of Compression Steel, and Confining Stirrups’ Spacing. Iranian Journal of Science and Technology, Transactions of Civil Engineering 47, 221–249 (2023) [CrossRef] [Google Scholar]
  21. Anas, S. M., Alam, M., & Umair, M. (2022). Performance of (1) concrete-filled double-skin steel tube with and without core concrete, and (2) concrete-filled steel tubular axially loaded composite columns under close-in blast. International Journal of Protective Structures 14(3), 299-334 (2023) [CrossRef] [Google Scholar]
  22. Anas, S. M., Alam, M., & Umair, M. Performance of one-way concrete slabs reinforced with conventional and polymer re-bars under air-blast loading. In: Chandrasekaran S., Kumar S., Madhuri S. (eds) Recent Advances in Structural Engineering, NIT-Jamshedpur, Jamshedpur, India, Lecture Notes in Civil Engineering 135, 179-191 (2020) [CrossRef] [Google Scholar]
  23. Ahmadi, E., Alam, M., & Anas, S. M. Blast Performance of RCC Slab and Influence of Its Design Parameters. In: Kolathayar S., Ghosh C., Adhikari B.R., Pal I., Mondal A. (eds) Resilient Infrastructure, NIT-Karnataka, Surathkal, India, Lecture Notes in Civil Engineering 202, 389-402 (2021) [CrossRef] [Google Scholar]
  24. Anas, S. M., Ansari, Md. I., & Alam, M. Performance of masonry heritage building under air-blast pressure without and with ground shock. Australian Journal of Structural Engineering 21(4), 329-344 (2020) [CrossRef] [Google Scholar]
  25. Anas, S. M., Alam, M., & Umair, M. Performance of on-ground double-roof RCC shelter with energy absorption layers under close-in air-blast loading. Asian Journal of Civil Engineering 22, 1525-1549 (2021) [CrossRef] [Google Scholar]
  26. Anas, S. M., Alam, M., & Umair, M. Air-blast and ground shockwave parameters, shallow underground blasting, on the ground and buried shallow underground blast-resistant shelters: A review. International Journal of Protective Structures 13(1), 99-139 (2021) [Google Scholar]
  27. Anas, S. M., & Alam, M. Comparison of Existing Empirical Equations for Blast Peak Positive Overpressure from Spherical Free Air and Hemispherical Surface Bursts. Iranian Journal of Science and Technology, Transactions of Civil Engineering 46, 965-984 (2021) [Google Scholar]
  28. Shariq, M., Alam, M., Husain, A., & Anas, S. M. Jacketing with steel angle sections and wide battens of RC column and its influence on blast performance. Asian Journal of Civil Engineering 23, 487-500 (2022) [CrossRef] [Google Scholar]
  29. Ul-Ain, Q., Alam, M., & Anas, S. M. Response of Two-Way RCC Slab with Unconventionally Placed Reinforcements Under Contact Blast Loading. Advances in Structural Mechanics and Applications 27, 219-238 (2022) [CrossRef] [Google Scholar]
  30. Tahzeeb, R., Alam, M., Anas, S. M., & Muddassir, S. M. Dynamic Response of CFST Column with In-plane Cross-reinforcement and Partial CFRP Wrapping upon Contact Blast. Innovative Infrastructure Solutions 8, 241 (2023) [CrossRef] [Google Scholar]
  31. Al-Dala’ien, R. N., Syamsir, A., Usman, F., & Abdullah M. J. The effect of the W-shape stirrups shear reinforcement on the dynamic behavior of RC flat solid slab subjected to the low-velocity impact loading. Results in Engineering 19, 101353 (2023) [CrossRef] [Google Scholar]
  32. Al-Dala’ien, R. N., Syamsir, A., Abu Bakar, M. S., Usman, F., & Abdullah, M. J. Failure Modes Behavior of Different Strengthening Types of RC Slabs Subjected to Low-Velocity Impact Loading: A Review. Journal of Composites Science 7, 246 (2023) [CrossRef] [Google Scholar]
  33. Anas, S. M., Shariq, M., & Alam, M. Performance of Axially Loaded Square RC Columns with Single/Double Confinement Layer(s) and Strengthened with C-FRP Wrapping under Close-in Blast. Materials Today: Proceedings 58(4), 1128-1141 (2022) [CrossRef] [Google Scholar]
  34. Anas, S. M., Shariq, M., Alam, M., & Umair, M. Modeling of Crashworthy Foam Mounted Braced Unreinforced Brick Masonry Wall and Prediction of Anti-Blast Performance. International Journal of Protective Structures (2023) [Google Scholar]
  35. Anas, S. M., Alam, M., & Shariq, M. Damage Response of Conventionally Reinforced Two-way Spanning Concrete Slab under Eccentric Impacting Drop Weight Loading. Defence Technology 19, 12–34 (2023) [CrossRef] [Google Scholar]
  36. Anas, S. M., Shariq, M., Alam, M., Yosri, A. M., Mohamed, A., & AbdelMongy, M. Influence of Supports on the Low-Velocity Impact Response of Square RC Slab of Standard Concrete and Ultra-High Performance Concrete: FEM-Based Computational Analysis. Buildings 13(5) (2023) [Google Scholar]
  37. Anas, S. M., Alam, M., & Saidani, M. Prediction of Impact Response of Square Reinforced Concrete (RC) Slab with Square/Circular Opening under Drop-weight Impact using FEM Simulation. Asian Journal of Civil Engineering 25, 2189–2208 (2024) [CrossRef] [Google Scholar]
  38. Su, Y., Wu, C., & Griffith, M. Mitigation of blast effects on aluminum foam protected masonry walls. Transactions of Tianjin University 14, 558–562 (2008) [CrossRef] [Google Scholar]
  39. Da Silva, L. C. M., & Milani, G. A FE-Based Macro-Element for the Assessment of Masonry Structures: Linear Static, Vibration, and Non-Linear Cyclic Analyses. Applied Sciences 12(3), (2022) [Google Scholar]
  40. Spada, A., Giambanco, G., & Rizzo, P. Damage and plasticity at the interfaces in composite materials and structures. Computer Methods in Applied Mechanics and Engineering 198, 3884–3901 (2009) [CrossRef] [Google Scholar]
  41. Pelà, L., Cervera, M., & Roca, P. Continuum damage model for orthotropic materials: application to masonry. Computer Methods in Applied Mechanics and Engineering 200, 917–30 (2011) [CrossRef] [Google Scholar]
  42. Nazir, S., & Dhanasekar, M. Modelling the failure of thin layered mortar joints in masonry. Engineering Structures 49, 615–27 (2013) [CrossRef] [Google Scholar]
  43. Nazir, S., & Dhanasekar, M. A non-linear interface element model for thin layer high adhesive mortared masonry. Computers & Structures 144, 23–39 (2014) [CrossRef] [Google Scholar]
  44. Janaraj, T., & Dhanasekar, M. Finite element analysis of the in-plane shear behaviour of masonry panels confined with reinforced grouted cores. Construction and Building Materials 65, 495–506 (2014) [CrossRef] [Google Scholar]
  45. Penna, A., Lagomarsino, S., & Galasco, A. A nonlinear macroelement model for seismic analysis of masonry buildings. Earthquake Engineering & Structural Dynamics 43(2), 159–79 (2014) [CrossRef] [Google Scholar]
  46. Rahman, A., & Ueda, T. Experimental investigation and numerical modeling of peak shear stress of brick masonry mortar joint under compression. Journal of Materials in Civil Engineering 26(9), 1–12 (2014) [CrossRef] [Google Scholar]
  47. Bolhassani, M., Hamid, A. A., Lau, A. C. W., & Moona, F. Simplified micro modeling of partially grouted masonry assemblages. Construction and Building Materials 83, 159–73 (2015) [CrossRef] [Google Scholar]
  48. Yu, J., Gan, P. Y., Wu, J., and Wu, H. Effect of concrete masonry infill walls on progressive collapse performance of reinforced concrete infilled frames. Engineering Structures 191, 179-193 (2019) [CrossRef] [Google Scholar]
  49. Hashin, Z. Theory of Fiber Reinforced Materials. NASA CR-1974 (1972) [Google Scholar]
  50. Hashin, Z., and Rotem, A. A Fatigue Failure Criterion for Fiber Reinforced Materials. Journal of Composite Materials 7(4), (2016) [Google Scholar]
  51. Zhang, S. S., & Teng, J. G. Finite element analysis of end cover separation in RC beams strengthened in flexure with FRP. Engineering Structures 75, 550–560 (2014) [CrossRef] [Google Scholar]
  52. Hao, H., Hao, Y., Li, J., & Chen, W. Review of the current practices in blastresistant analysis and design of concrete structures. Advances in Structural Engineering 19(8), 1193-1223 (2016) [CrossRef] [Google Scholar]
  53. Jawdhari, A., Fam, A., & Harik, I. Bond between CFRP rod panels and concrete using cementitious mortar. Construction and Building Materials 235, 117503 (2020) [CrossRef] [Google Scholar]
  54. Kadhim, M. M. A., Jawdhari, A. R., Altaee, M. J., & Adheem, A. H. Finite element modelling and parametric analysis of FRP strengthened RC beams under impact load. Journal of Building Engineering 32, 101526 (2020) [CrossRef] [Google Scholar]
  55. Li, S., Zhang, S., Li, H., Qin, X., Wu, X., & Gui, L. Numerical and experimental investigation of fitting tolerance effects on bearing strength of CFRP/Al single-lap blind riveted joints. Composite Structures 281, 115022 (2022) [CrossRef] [Google Scholar]
  56. Obaidat, Y. T., Heyden, S., & Dahlblom, O. The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM. Composite Structures 92(6), 1391-1398 (2010) [CrossRef] [Google Scholar]
  57. Jahami, A., Temsah, Y., & Khatib, J. The efficiency of using CFRP as a strengthening technique for reinforced concrete beams subjected to blast loading. International Journal of Advanced Structural Engineering 11, 411-420 (2019) [CrossRef] [Google Scholar]
  58. Arcine, M. D. F., Menon, N. V., and Krahl, P. A. Numerical and experimental study of the interaction between stirrups and shear strengthening with CFRP in RC beams. Engineering Structures 278, 115514 (2023) [CrossRef] [Google Scholar]
  59. Shariq, M., Alam, M., Anas, S. M., Islam, N., & Hussain, A. Performance Enhancement of Square RC Column Carrying Axial Compression by (1) C-FRP Wrapping, and (2) Steel Angle System under Air-blast Loading. International Journal of Computational Materials Science and Surface Engineering 11(2), 99-119 (2022) [CrossRef] [Google Scholar]
  60. Shariq, M., Anas, S. M., & Alam, M. (2022). Blast Resistance Prediction of Clay Brick Masonry Wall Strengthened with Steel Wire Mesh, and C-FRP Laminate under Explosion Loading: A Finite Element Analysis. International Journal of Reliability and Safety 16, 27-45 (2023) [CrossRef] [Google Scholar]
  61. Anas, S. M., Alam, M., Isleem, H. F., Najm, H. M., & Sabri, M. M. S. Ultra High Performance Concrete (UHPC) and C-FRP Tension Re-bars: A Unique Combinations of Materials for Slabs subjected to Low-velocity Drop Impact Loading. Frontiers in Materials 9, 1061297 (2022) [CrossRef] [Google Scholar]
  62. Anas, S. M., Alam, M., & Tahzeeb, R. Impact response prediction of square RC slab of normal strength concrete strengthened with (1) laminates of (i) mild-steel and (ii) C-FRP, and (2) strips of C-FRP under falling-weight load. Materials Today: Proceedings 87, 9-19 (2023) [CrossRef] [Google Scholar]
  63. Anas, S. M., Al-Dala’ien, R. N., Alam, M., Kanaan, M. H. G., Akram, S., & Haris, M. (2023). Numerical Analysis of Compound Walls of Brick Masonry, Strengthened with C-FRP Laminate under Explosive Detonations – Afghanistan Scenario. E3S Web of Conferences 434, 02035 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  64. Shi, W-H. , Yue, S., Wu, C-bo. , Liu, Z., Liu, Z., Zhao, B-B. , Du, Z-H. , & Gao, G-F. Temperature influences of the recoil characteristics for aluminum honeycomb buffer in the tether-net launcher. Defence Technology 29, 39-54 (2023) [CrossRef] [Google Scholar]
  65. Nam, H. S., Kim, J. S., Han, J. J., Kim, J. W., & Kim, Y. J. Ductile fracture simulation for A106 Gr.B carbon steel under high strain rate loading condition. Recent Advances in Structural Integrity Analysis – Proceedings of the International Congress (APCF/SIF-2014), pp. 37-41, (2014). DOI: 10.1533/9780081002254.37. [Google Scholar]
  66. Jain, R., Pal, S. K., & Singh, S. B. 5 – Numerical modeling methodologies for friction stir welding process. Computational Methods and Production Engineering, Elsevier, Amsterdam (2017) [Google Scholar]
  67. Johnson, G. R., & Cook, W. H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proc. 7th Int. Symp. Ballist. 547, 541–547 (1983) [Google Scholar]
  68. Totemeier, T. C. 38 – Non-conventional and emerging metallic materials. Smithells Metals Reference Book (Eighth Edition), pp. 38-1 to 38-38 (2007) [Google Scholar]
  69. Soltanihafshejani, N., Bitter, T., Janssen, D., & Verdonschot, N. Development of a crushable foam model for human trabecular bone. Medical Engineering & Physics 96, 53-63 (2021) [CrossRef] [PubMed] [Google Scholar]
  70. Kyei, C., & Braimah, A. Effects of transverse reinforcement spacing on the response of reinforced concrete columns subjected to blast loading. Engineering Structures 142, 148-164 (2017) [CrossRef] [Google Scholar]
  71. Maalej, M., Lin, V. W. J., Nguyen, M. P., & Quek, S. T. Engineered cementitious composites for effective strengthening of unreinforced masonry walls. Engineering Structures 32(8), 2432–2439, (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.