Open Access
Issue
E3S Web Conf.
Volume 500, 2024
The 1st International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2023)
Article Number 03001
Number of page(s) 8
Section Engineering and Technology
DOI https://doi.org/10.1051/e3sconf/202450003001
Published online 11 March 2024
  1. Zhang, Y., Sappinen, T., Korkiala-Tanttu, L., Vilenius, M. and Juuti, E., 2021. Investigations into stabilized waste foundry sand for applications in pavement structures. Resources, Conservation and Recycling, 170, p.105585. https://doi.org/10.1016/j.resconrec.2021.105585 [CrossRef] [Google Scholar]
  2. Yadav, A.P. and Kumar, E.N., 2019. A Comparative Study of Waste Foundry Sand and Marble Dust for Stabilization of Subgrade Soil. International Journal for Research in Applied Science & Engineering Technology (IJRASET).7(IV) [Google Scholar]
  3. Mishra, B., 2015. A study on characteristics of subgrade soil by use of foundry sand and iron turnings. International Journal of Science and Research (IJSR), 4(12), pp.1262-1266. [CrossRef] [Google Scholar]
  4. Bhardwaj, A. and Sharma, R.K., 2022. Designing thickness of subgrade for flexible pavements incorporating waste foundry sand, molasses, and lime. Innovative Infrastructure Solutions, 7(1), pp.1-18. [CrossRef] [Google Scholar]
  5. Jamshida M.J., Anu Jacob, Amina Latheef, Muhammed K, Adila Abdullakunju. 2020. Stabilization of Expansive Sub-Grade for Pavement using Foundry Sand. . International Research Journal of Engineering and Technology (IRJET), 7(07), 3123-3126. [Google Scholar]
  6. Gunarti, A.S.S. and Raharja, I., 2020, May. Mechanical Properties Improvement of Clays Using Silica Sand Waste and Dust Sand Foundry Waste. In IOP Conference Series: Materials Science and Engineering (Vol. 856, No. 1, p. 012002). IOP Publishing. [CrossRef] [Google Scholar]
  7. Gunarti, A.S.S., Nuryati, S., Muttaqin, P.A. and Raharja, I., 2020, April. Unconfined compression strength of soil using silica sand waste and dust sand foundry as a stabilizer. In Journal of Physics: Conference Series (Vol. 1517, No. 1, p. 012028). IOP Publishing. [CrossRef] [Google Scholar]
  8. Venkatesh, J., Chinnusamy, K. and Murugesh, S., 2020, November. A Review Paper on Comparative study of Expansive Sub-Grade Stabilization using Industrial Wastes like Foundry Sand, Quarry Dust, Demolition Wastes and Rubber Scrap. In IOP Conference Series: Materials Science and Engineering (Vol. 955, No. 1, p. 012062). IOP Publishing. [CrossRef] [Google Scholar]
  9. Bhardwaj, B., & Kumar, P. 2017. Waste foundry sand in concrete: A review. Construction and Building Materials, 156, 661–674. https://doi.org/10.1016/j.conbuildmat.2017.09.010 [CrossRef] [Google Scholar]
  10. Moses, G., Saminu, A. and Oriola, F.O.P., 2012. Influence of compactive efforts on compacted foundry Sand treated with Cement Kiln dust. Civil and Environmental Research, 2(5), pp.11-24. [Google Scholar]
  11. Prabhakar, Kori, S., Ramana, N.V., 2020. Stabilization of Subgrade Black Cotton Soil using Quarry Dust and Foundry Sand. IJRTE. https://doi.org/10.35940/ijrte.e6761.018520 [Google Scholar]
  12. Sharma, R.K., 2014. Subgrade characteristics of soil mixed with foundry sand and randomly distributed steel chips. Indian Highways, 42(4). [Google Scholar]
  13. Razvi, S., Sujahat, S., Adnan, S., Aasim, K., Ravi, U. and Saud, M., 2007. Stabilization of Soil by Foundry Sand with Fly-Ash. Int. J. Innov. Res. Sci. Eng. Technol.(An ISO, 3297(5), pp.9449-9454. [Google Scholar]
  14. Prajapati, B., AK, D., Tiwari, R. P., & Singh, N. K. 2016. Comparative Study of used foundry sand and marble dust on geotechnical properties of Silty Soil. International Research Journal of Engineering and Technology (IRJET), 3(05), 2395-0072. [Google Scholar]
  15. Mgangira, M.B. and Jones, G.A., 2006. Laboratory assessment of the influence of the proportion of waste foundry sand on the geotechnical engineering properties of clayey soils. Journal of the South African Institution of Civil Engineering= Joernaal van die Suid-Afrikaanse Instituut van Siviele Ingenieurswese, 48(1), pp.2-7. [Google Scholar]
  16. Manish, V. K. S. 2021. Use of Waste Foundry Sand (WFS) and Crushed Waste Glass (CWG) on Stabilization of Black Cotton Soil-Review. [Google Scholar]
  17. Kumar, A., Sharma, R.K. and Singh, B., 2014. Compaction and sub-grade characteristics of clayey soil mixed with foundry sand and fly ash and tile waste. IOSR Journal of Mechanical and Civil Engineering, (spl), pp.1-5. [Google Scholar]
  18. Heidemann, M., Nierwinski, H. P., Hastenpflug, D., Barra, B. S., & Perez, Y. G. 2021. Geotechnical behavior of a compacted waste foundry sand. Construction and Building Materials, 277, 122267. [CrossRef] [Google Scholar]
  19. Guney, Y., Aydilek, A.H. and Demirkan, M.M., 2006. Geoenvironmental behavior of foundry sand amended mixtures for highway subbases. Waste management, 26(9), pp.932-945. [CrossRef] [Google Scholar]
  20. Grower, K.U.L.D.E.E.P. and Goyal, E.T., 2019. Experimental Study Of Waste Foundry Sand And Marble Dust As A Soil Stabilizing Material. no. June, pp.1265-1272. [Google Scholar]
  21. Arulrajah, A., Yaghoubi, E., Imteaz, M. and Horpibulsuk, S., 2017. Recycled waste foundry sand as a sustainable subgrade fill and pipe-bedding construction material: Engineering and environmental evaluation. Sustainable cities and society, 28, pp.343-349. [CrossRef] [Google Scholar]
  22. Siddique, R., 2014. Utilization of industrial by-products in concrete. Procedia Engineering, 95, pp.335-347. [CrossRef] [Google Scholar]
  23. Reddy, P.S., Mohanty, B. & Rao, B.H. 2020. Influence of Clay Content and Montmorillonite Content on Swelling Behavior of Expansive Soils. Int. J. of Geosynth. and Ground Eng. 6, 1 . https://doi.org/10.1007/s40891-020-0186-6 [Google Scholar]
  24. Dakshanamurthy, V. and Raman, V., 1973. A simple method of identifying an expansive soil. Soils and foundations, 13(1), pp.97-104. [CrossRef] [Google Scholar]
  25. Sudjatmiko, A.E.T, 2017. Penelitian karakteristik parameter kuat geser tanah lempung ekspansif Cikarang dengan uji laboratorium dan uji insitu (Doctoral dissertation, Program Doktor Ilmu Teknik Sipil Program Pascasarjana Universitas Katolik Parahyangan). [Google Scholar]
  26. Zaika, Y. and Suryo, E.A., 2020. The durability of lime and rice husk ash improved expansive soil. GEOMATE Journal, 18(65), pp.171-178. [Google Scholar]
  27. Ikeagwuani, C.C. and Nwonu, D.C., 2019. Emerging trends in expansive soil stabilisation: A review. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), pp.423-440. [CrossRef] [Google Scholar]
  28. ASTM, ASTM D4318-17e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, 2017, https://doi.org/10.1520/D4318-17E01. [Google Scholar]
  29. ASTM, ASTM D1557-12e1 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)),2012, https://doi.org/10.1520/D1557-12E01. [Google Scholar]
  30. ASTM, ASTM D1883-16 Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils, 2016, https://doi.org/10.1520/D1883-16. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.