Open Access
Issue |
E3S Web Conf.
Volume 500, 2024
The 1st International Conference on Environment, Green Technology, and Digital Society (INTERCONNECTS 2023)
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 13 | |
Section | Health Science | |
DOI | https://doi.org/10.1051/e3sconf/202450004002 | |
Published online | 11 March 2024 |
- F. Zhong dkk. , “Artificial intelligence in drug design,” Sci. China Life Sci., vol. 61, no. 10, hlm. 1191-1204, Okt 2018, doi: 10.1007/s11427-018-9342-2. [CrossRef] [PubMed] [Google Scholar]
- W. Zhang, J. Pei, dan L. Lai, “Computational Multitarget Drug Design,” J. Chem. Inf. Model., vol. 57, no. 3, hlm. 403-412, Mar 2017, doi: 10.1021/acs.jcim.6b00491. [CrossRef] [PubMed] [Google Scholar]
- F. E. Agamah dkk. , “Computational/in silico methods in drug target and lead prediction,” Briefings in Bioinformatics, vol. 21, no. 5, hlm. 1663-1675, Sep 2020, doi: 10.1093/bib/bbz103. [CrossRef] [PubMed] [Google Scholar]
- R. Huang dkk. , “The NCGC Pharmaceutical Collection: A Comprehensive Resource of Clinically Approved Drugs Enabling Repurposing and Chemical Genomics,” Sci. Transl. Med., vol. 3, no. 80, Apr 2011, doi: 10.1126/scitranslmed.3001862. [Google Scholar]
- Z. Liu dkk. , “In silico drug repositioning – what we need to know,” Drug Discovery Today, vol. 18, no. 3-4, hlm. 110-115, Feb 2013, doi: 10.1016/j.drudis.2012.08.005. [CrossRef] [PubMed] [Google Scholar]
- D. S. Wishart, “DrugBank and its relevance to pharmacogenomics,” Pharmacogenomics, vol. 9, no. 8, hlm. 1155-1162, 2008, doi: 10.2217/14622416.9.8.1155. [CrossRef] [PubMed] [Google Scholar]
- D. S. Wishart, “DrugBank: A knowledgebase for drugs, drug actions and drug targets,” Nucleic Acids Research, vol. 36, no. Query date: 2022-10-12 21:28:35, 2008, doi: 10.1093/nar/gkm958. [Google Scholar]
- S. S. Phatak dan S. Zhang, “A novel multi-modal drug repurposing approach for identification of potent ACK1 inhibitors,” Pacific Symposium on Biocomputing, hlm. 29-40, 2013, doi: 10.1142/9789814447973_0004. [Google Scholar]
- Y. Zhang, “Differential expression analysis in ovarian cancer: A functional genomics and systems biology approach,” Saudi Journal of Biological Sciences, vol. 28, no. 7, hlm. 4069-4081, 2021, doi: 10.1016/j.sjbs.2021.04.022. [CrossRef] [PubMed] [Google Scholar]
- J. You, “Predicting drug-target interaction network using deep learning model,” Computational Biology and Chemistry, vol. 80, no. Query date: 2022-10-07 14:56:32, hlm. 90-101, 2019, doi: 10.1016/j.compbiolchem.2019.03.016. [CrossRef] [PubMed] [Google Scholar]
- C. Fabbri, “Drug repositioning for treatment-resistant depression: Hypotheses from a pharmacogenomic study,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 104, no. Query date: 2022-10-12 21:28:35, 2021, doi: 10.1016/j.pnpbp.2020.110050. [CrossRef] [Google Scholar]
- M. H. S. Lesmana, “Genomic-Analysis-Oriented Drug Repurposing in the Search for Novel Antidepressants,” Biomedicines, vol. 10, no. 8, 2022, doi: 10.3390/biomedicines10081947. [Google Scholar]
- W. Adikusuma, “Drug Repurposing for Atopic Dermatitis by Integration of Gene Networking and Genomic Information,” Frontiers in Immunology, vol. 12, no. Query date: 2022-10-12 21:26:54, 2021, doi: 10.3389/fimmu.2021.724277. [CrossRef] [Google Scholar]
- W. Adikusuma, “Identification of Druggable Genes for Asthma by Integrated Genomic Network Analysis,” Biomedicines, vol. 10, no. 1, 2022, doi: 10.3390/biomedicines10010113. [CrossRef] [PubMed] [Google Scholar]
- A. R. Afief, “Integration of genomic variants and bioinformatic-based approach to drive drug repurposing for multiple sclerosis,” Biochemistry and Biophysics Reports, vol. 32, no. Query date: 2022-10-07 14:56:32, 2022, doi: 10.1016/j.bbrep.2022.101337. [CrossRef] [PubMed] [Google Scholar]
- L. M. Irham, “The use of genomic variants to drive drug repurposing for chronic hepatitis B,” Biochemistry and Biophysics Reports, vol. 31, no. Query date: 2022-10-07 14:56:32, 2022, doi: 10.1016/j.bbrep.2022.101307. [CrossRef] [PubMed] [Google Scholar]
- Y. Liu, M. Karaca, Z. Zhang, D. Gioeli, H. S. Earp, dan Y. E. Whang, “Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases,” Oncogene, vol. 29, no. 22, hlm. 3208-3216, Jun 2010, doi: 10.1038/onc.2010.103. [CrossRef] [PubMed] [Google Scholar]
- J. Araujo, Trudel, dan Paliwal, “Long-term use of dasatinib in patients with metastatic castration-resistant prostate cancer after receiving the combination of dasatinib and docetaxel,” CMAR, hlm. 25, Mar 2013, doi: 10.2147/CMAR.S41667. [Google Scholar]
- B. Wang, D. Lu, M. Xuan, dan W. Hu, “Antitumor effect of sunitinib in human prostate cancer cells functions via autophagy,” Experimental and Therapeutic Medicine, vol. 13, no. 4, hlm. 1285-1294, Apr 2017, doi: 10.3892/etm.2017.4134. [CrossRef] [PubMed] [Google Scholar]
- M. Dror Michaelson dkk. , “Phase II study of sunitinib in men with advanced prostate cancer,” Annals of Oncology, vol. 20, no. 5, hlm. 913-920, Mei 2009, doi: 10.1093/annonc/mdp111. [CrossRef] [PubMed] [Google Scholar]
- G. Liu dkk. , “A Phase II Trial of Flavopiridol (NSC #649890) in Patients with Previously Untreated Metastatic Androgen-Independent Prostate Cancer,” Clinical Cancer Research, vol. 10, no. 3, hlm. 924-928, Feb 2004, doi: 10.1158/1078-0432.CCR-03-0050. [CrossRef] [PubMed] [Google Scholar]
- D. Brehmer dkk. , “Cellular Targets of Gefitinib,” Cancer Research, vol. 65, no. 2, hlm. 379-382, Jan 2005, doi: 10.1158/0008-5472.379.65.2. [CrossRef] [PubMed] [Google Scholar]
- M. A. Sakurai dkk. , “Gefitinib and Luteolin Cause Growth Arrest of Human Prostate Cancer PC-3 Cells via Inhibition of Cyclin G-Associated Kinase and Induction of miR– 630,” PLoS ONE, vol. 9, no. 6, hlm. e100124, Jun 2014, doi: 10.1371/journal.pone.0100124. [CrossRef] [PubMed] [Google Scholar]
- C. W. Helm dan J. C. States, “Enhancing the efficacy of cisplatin in ovarian cancer treatment – could arsenic have a role,” J Ovarian Res, vol. 2, no. 1, hlm. 2, 2009, doi: 10.1186/1757-2215-2-2. [Google Scholar]
- X.-Y. Shi dkk. , “Low concentrations of bisphenol A promote human ovarian cancer cell proliferation and glycolysis-based metabolism through the estrogen receptor-a pathway,” Chemosphere, vol. 185, hlm. 361-367, Okt 2017, doi: 10.1016/j.chemosphere.2017.07.027. [CrossRef] [PubMed] [Google Scholar]
- D. O. Bauerschlag dkk. , “Sunitinib (SU11248) Inhibits Growth of Human Ovarian Cancer in Xenografted Mice,” ANTICANCER RESEARCH, 2010. [Google Scholar]
- T. J. Abrams dkk. , “Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with ‘“standard of care”’ therapeutic agents for the treatment of breast cancef’. [Google Scholar]
- S. A. Mirmalek dkk. , “Cytotoxic and apoptogenic effect of hypericin, the bioactive component of Hypericum perforatum on the MCF-7 human breast cancer cell line,” Cancer Cell Int, vol. 16, no. 1, hlm. 3, Des 2015, doi: 10.1186/s12935-016-0279-4. [Google Scholar]
- P. Kimakova dkk. , “Photoactivated hypericin increases the expression of SOD-2 and makes MCF-7 cells resistant to photodynamic therapy,” Biomedicine & Pharmacotherapy, vol. 85, hlm. 749-755, Jan 2017, doi: 10.1016/j.biopha.2016.11.093. [CrossRef] [Google Scholar]
- D. Mokoena, B. P. George, dan H. Abrahamse, “Conjugation of Hypericin to Gold Nanoparticles for Enhancement of Photodynamic Therapy in MCF-7 Breast Cancer Cells,” Pharmaceutics, vol. 14, no. 10, hlm. 2212, Okt 2022, doi: 10.3390/pharmaceutics 14102212. [CrossRef] [PubMed] [Google Scholar]
- M. Liu dkk. , “Synthesis and Cytotoxicity against K562 Cells of 3-O-Angeloyl-20-O– acetyl Ingenol, a Derivative of Ingenol Mebutate,” IJMS, vol. 17, no. 8, hlm. 1348, Agu 2016, doi: 10.3390/ijms17081348. [CrossRef] [Google Scholar]
- K. Zarchi dan G. B. E. Jemec, “Ingenol Mebutate: From Common Weed to Cancer Cure,” dalam Current Problems in Dermatology, vol. 46, H. P. Soyer, T. W. Prow, dan G. B. E. Jemec, Ed. S. Karger AG, 2015, hlm. 136-142. doi: 10.1159/000366549. [CrossRef] [PubMed] [Google Scholar]
- S. Dinicola dkk. , “Inositol induces mesenchymal-epithelial reversion in breast cancer cells through cytoskeleton rearrangement,” Experimental Cell Research, vol. 345, no. 1, hlm. 37-50, Jul 2016, doi: 10.1016/j.yexcr.2016.05.007. [CrossRef] [PubMed] [Google Scholar]
- M. Bizzarri, S. Dinicola, A. Bevilacqua, dan A. Cucina, “Broad Spectrum Anticancer Activity of Myo-Inositol and Inositol Hexakisphosphate,” International Journal of Endocrinology, vol. 2016, hlm. 1-14, 2016, doi: 10.1155/2016/5616807. [CrossRef] [Google Scholar]
- I. Bacic, N. Druzijanic, R. Karlo, I. Skific, dan S. Jagic, “Efficacy of IP6 + inositol in the treatment of breast cancer patients receiving chemotherapy: prospective, randomized, pilot clinical study,” J Exp Clin Cancer Res, vol. 29, no. 1, hlm. 12, Des 2010, doi: 10.1186/1756-9966-29-12. [CrossRef] [PubMed] [Google Scholar]
- A. Koeberle dkk. , “Hyperforin, an Anti-Inflammatory Constituent from St. John’s Wort, Inhibits Microsomal Prostaglandin E2 Synthase-1 and Suppresses Prostaglandin E2 Formation in vivo,” Front. Pharmacol., vol. 2, 2011, doi: 10.3389/fphar.2011.00007. [Google Scholar]
- M. Dona dkk. , “Hyperforin Inhibits Cancer Invasion and Metastasis,” Cancer Research, vol. 64, no. 17, hlm. 6225-6232, Sep 2004, doi: 10.1158/0008-5472.CAN-04-0280. [CrossRef] [PubMed] [Google Scholar]
- C. V. Pereira, N. G. Machado, dan P. J. Oliveira, “Mechanisms of Berberine (Natural Yellow 18)-Induced Mitochondrial Dysfunction: Interaction with the Adenine Nucleotide Translocator,” Toxicological Sciences, vol. 105, no. 2, hlm. 408-417, Okt 2008, doi: 10.1093/toxsci/kfn131. [CrossRef] [Google Scholar]
- S. Hyun Baik dan J. Lee, “Adenine nucleotide translocase 2: an emerging player in cancer,” J Stem Cell Res Med, vol. 1, no. 2, 2016, doi: 10.15761/JSCRM.1000111. [Google Scholar]
- Q. Zhao dkk. , “The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARy-mediated alteration of microglial activation phenotypes,” J Neuroinflammation, vol. 13, no. 1, hlm. 259, Des 2016, doi: 10.1186/s12974-016-0728-y. [CrossRef] [PubMed] [Google Scholar]
- Z. Zhao dkk. , “Rosiglitazone Exerts an Anti-depressive Effect in Unpredictable Chronic Mild-Stress-Induced Depressive Mice by Maintaining Essential Neuron Autophagy and Inhibiting Excessive Astrocytic Apoptosis,” Front. Mol. Neurosci., vol. 10, hlm. 293, Sep 2017, doi: 10.3389/fnmol.2017.00293. [Google Scholar]
- B. S. Ferreira Mello dkk. , “Effects of doxycycline on depressive-like behavior in mice after lipopolysaccharide (LPS) administration,” Journal of Psychiatric Research, vol. 47, no. 10, hlm. 1521-1529, Okt 2013, doi: 10.1016/jjpsychires.2013.06.008. [CrossRef] [PubMed] [Google Scholar]
- H. Hori dan H. Kunugi, “The Efficacy of Pramipexole, a Dopamine Receptor Agonist, as an Adjunctive Treatment in Treatment-Resistant Depression: An Open-Label Trial,” The Scientific World Journal, vol. 2012, hlm. 1-8, 2012, doi: 10.1100/2012/372474. [CrossRef] [Google Scholar]
- J. A. Franco-Chaves, C. F. Mateus, D. A. Luckenbaugh, P. E. Martinez, A. G. Mallinger, dan C. A. Zarate, “Combining a dopamine agonist and selective serotonin reuptake inhibitor for the treatment of depression: A double-blind, randomized pilot study,” Journal of Affective Disorders, vol. 149, no. 1-3, hlm. 319-325, Jul 2013, doi: 10.1016/jjad.2013.02.003. [CrossRef] [PubMed] [Google Scholar]
- A. Limon, F. Mamdani, B. E. Hjelm, M. P. Vawter, dan A. Sequeira, “Targets of polyamine dysregulation in major depression and suicide: Activity-dependent feedback, excitability, and neurotransmission,” Neuroscience & Biobehavioral Reviews, vol. 66, hlm. 80-91, Jul 2016, doi: 10.1016/j.neubiorev.2016.04.010. [CrossRef] [Google Scholar]
- C. F. Zorumski, Y. Izumi, dan S. Mennerick, “Ketamine: NMDA Receptors and Beyond,” J. Neurosci., vol. 36, no. 44, hlm. 11158-11164, Nov 2016, doi: 10.1523/JNEUROSCI.1547-16.2016. [CrossRef] [PubMed] [Google Scholar]
- C. Crotti, M. Biggioggero, A. Becciolini, dan E. G. Favalli, “Sarilumab: patient-reported outcomes in rheumatoid arthritis,” PROM, vol. Volume 9, hlm. 275-284, Agu 2018, doi: 10.2147/PROM.S147286. [CrossRef] [Google Scholar]
- M. N. Lwin, L. Serhal, C. Holroyd, dan C. J. Edwards, “Rheumatoid Arthritis: The Impact of Mental Health on Disease: A Narrative Review,” Rheumatol Ther, vol. 7, no.3, hlm. 457-471, Sep 2020, doi: 10.1007/s40744-020-00217-4. [CrossRef] [PubMed] [Google Scholar]
- E. H. S. Choy dan L. H. Calabrese, “Neuroendocrine and neurophysiological effects of interleukin 6 in rheumatoid arthritis,” Rheumatology, vol. 57, no. 11, hlm. 1885-1895, Nov 2018, doi: 10.1093/rheumatology/kex391. [CrossRef] [PubMed] [Google Scholar]
- J. Sellner, H. H. Sitte, dan P. S. Rommer, “Targeting interleukin-6 to treat neuromyelitis optica spectrum disorders: Implications from immunology, the FcRn pathway and clinical experience,” Drug Discovery Today, vol. 26, no. 7, hlm. 1591-1601, Jul 2021, doi: 10.1016/j.drudis.2021.03.018. [CrossRef] [PubMed] [Google Scholar]
- W. Adikusuma, “Drug Repurposing for Atopic Dermatitis by Integration of Gene Networking and Genomic Information,” Frontiers in Immunology, vol. 12, no. Query date: 2022-10-07 14:56:32, 2021, doi: 10.3389/fimmu.2021.724277. [CrossRef] [Google Scholar]
- M. Nogueira dan T. Torres, “Janus Kinase Inhibitors for the Treatment of Atopic Dermatitis: Focus on Abrocitinib, Baricitinib, and Upadacitinib,” Dermatol Pract Concept, hlm. e2021145, Okt 2021, doi: 10.5826/dpc.1104a145. [Google Scholar]
- M. Napolitano, G. Fabbrocini, E. Cinelli, L. Stingeni, dan C. Patruno, “Profile of Baricitinib and Its Potential in the Treatment of Moderate to Severe Atopic Dermatitis: A Short Review on the Emerging Clinical Evidence,” JAA, vol. Volume 13, hlm. 8994, Jan 2020, doi: 10.2147/JAA.S206387. [Google Scholar]
- K. Reich dkk. , “Efficacy and Safety of Baricitinib Combined With Topical Corticosteroids for Treatment of Moderate to Severe Atopic Dermatitis: A Randomized Clinical Trial,” JAMA Dermatol, vol. 156, no. 12, hlm. 1333, Des 2020, doi: 10.1001/jamadermatol.2020.3260. [CrossRef] [PubMed] [Google Scholar]
- K. Reich dkk. , “Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Up): results from a randomised, double-blind, placebo-controlled, phase 3 trial,” The Lancet, vol. 397, no. 10290, hlm. 2169-2181, Jun 2021, doi: 10.1016/S0140–6736(21)00589-4. [CrossRef] [Google Scholar]
- J. M. Parmentier dkk. , “In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494),” BMC Rheumatol, vol. 2, no. 1, hlm. 23, Des 2018, doi: 10.1186/s41927-018-0031–x. [CrossRef] [PubMed] [Google Scholar]
- I. B. McInnes dkk. , “Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations,” Arthritis Res Ther, vol. 21, no. 1, hlm. 183, Des 2019, doi: 10.1186/s13075-019-1964-1. [CrossRef] [PubMed] [Google Scholar]
- A. Ostojic, R. Vrhovac, dan S. Verstovsek, “Ruxolitinib: a new JAK1/2 inhibitor that offers promising options for treatment of myelofibrosis,” Future Oncology, vol. 7, no. 9, hlm. 1035-1043, Sep 2011, doi: 10.2217/fon.11.81. [CrossRef] [PubMed] [Google Scholar]
- B. S. Kim, M. D. Howell, K. Sun, K. Papp, A. Nasir, dan M. E. Kuligowski, “Treatment of atopic dermatitis with ruxolitinib cream (JAK1/JAK2 inhibitor) or triamcinolone cream,” Journal of Allergy and Clinical Immunology, vol. 145, no. 2, hlm. 572-582, Feb 2020, doi: 10.1016/jjaci.2019.08.042. [CrossRef] [Google Scholar]
- W. Jin dkk. , “Topical Application of JAK1/JAK2 Inhibitor Momelotinib Exhibits Significant Anti-Inflammatory Responses in DNCB-Induced Atopic Dermatitis Model Mice,” IJMS, vol. 19, no. 12, hlm. 3973, Des 2018, doi: 10.3390/ijms19123973. [CrossRef] [Google Scholar]
- G. N. de Graav dkk., “Belatacept Does Not Inhibit Follicular T Cell-Dependent B-Cell Differentiation in Kidney Transplantation,” Front. Immunol., vol. 8, hlm. 641, Mei 2017, doi: 10.3389/fimmu.2017.00641. [CrossRef] [Google Scholar]
- R. L. Crepeau dan M. L. Ford, “Challenges and opportunities in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity,” Expert Opinion on Biological Therapy, vol. 17, no. 8, hlm. 1001-1012, Agu 2017, doi: 10.1080/14712598.2017.1333595. [CrossRef] [PubMed] [Google Scholar]
- R. Latek dkk. , “Assessment of Belatacept-Mediated Costimulation Blockade Through Evaluation of CD80/86-Receptor Saturation,” Transplantation, vol. 87, no. 6, hlm. 926933, Mar 2009, doi: 10.1097/TP.0b013e31819b5a58. [Google Scholar]
- V. Montesarchio dkk. , “Outcomes and biomarker analyses among patients with COVID– 19 treated with interleukin 6 (IL-6) receptor antagonist sarilumab at a single institution in Italy,” J Immunother Cancer, vol. 8, no. 2, hlm. e001089, Agu 2020, doi: 10.1136/jitc–2020-001089. [CrossRef] [PubMed] [Google Scholar]
- M. Narazaki dan T. Kishimoto, “Current status and prospects of IL-6-targeting therapy,” Expert Review of Clinical Pharmacology, vol. 15, no. 5, hlm. 575-592, Mei 2022, doi: 10.1080/17512433.2022.2097905. [CrossRef] [PubMed] [Google Scholar]
- D. Jiang dkk. , “Genetic variants in five novel loci including CFB and CD40 predispose to chronic hepatitis B,” Hepatology, vol. 62, no. 1, hlm. 118-128, Jul 2015, doi: 10.1002/hep.27794. [CrossRef] [PubMed] [Google Scholar]
- Department of Gastroenterology, Beijing Fengtai Hospital of Integrated Traditional and Western Medicine, Beijing, China dkk., “Statins in Hepatitis B or C Patients Is Associated With Reduced Hepatocellular Carcinoma Risk: A Systematic Review and Meta-Analysis,” Turk J Gastroenterol, vol. 33, no. 2, hlm. 136-144, Feb 2022, doi: 10.5152/tjg.2020.19656. [Google Scholar]
- F. Fabrizi, P. Martin, dan P. Messa, “New treatment for hepatitis C in chronic kidney disease, dialysis, and transplant,” Kidney International, vol. 89, no. 5, hlm. 988-994, Mei 2016, doi: 10.1016/j.kint.2016.01.011. [CrossRef] [PubMed] [Google Scholar]
- Y.-F. Liaw dkk. , “Lamivudine for Patients with Chronic Hepatitis B and Advanced Liver Disease,” N Engl J Med, vol. 351, no. 15, hlm. 1521-1531, Okt 2004, doi: 10.1056/NEJMoa033364. [CrossRef] [PubMed] [Google Scholar]
- Y.-H. Xun dkk. , “Metformin inhibits hepatitis B virus protein production and replication in human hepatoma cells,” J Viral Hepat, vol. 21, no. 8, hlm. 597-603, Agu 2014, doi: 10.1111/jvh.12187. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.