Open Access
E3S Web Conf.
Volume 503, 2024
The 9th International Symposium on Applied Chemistry in conjuction with the 5th International Conference on Chemical and Material Engineering (ISAC-ICCME 2023)
Article Number 02003
Number of page(s) 6
Section Biomass and Bioprocess Engineering
Published online 20 March 2024
  1. World Energy Consumption Statistics | Enerdata, (2022). (accessed November 22, 2022). [Google Scholar]
  2. N.K. Shammas, L.K. Wang, M.-H.S. Wang, Sources, Chemistry and Control of Acid Rain in the Environment, in: Handb. Environ. Waste Manag., WORLD SCIENTIFIC, 1-26 (2020). [Google Scholar]
  3. O. Awogbemi, D.V.V. Kallon, E.I. Onuh, V.S. Aigbodion, An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications, Energies 14, 5687 (2021). [Google Scholar]
  4. H. Joshi, B.R. Moser, J. Toler, W.F. Smith, T. Walker, Ethyl levulinate: A potential bio-based diluent for biodiesel which improves cold flow properties, Biomass Bioenergy 35 3262-3266 (2011). [CrossRef] [Google Scholar]
  5. A.Z. Mendiburu, C.H. Lauermann, T.C. Hayashi, D.J. Mariños, R.B. Rodrigues Da Costa, C.J.R. Coronado, J.J. Roberts, J.A. De Carvalho, Ethanol as a renewable biofuel: Combustion characteristics and application in engines, Energy 257, 124688 (2022). [CrossRef] [Google Scholar]
  6. S. Madiwale, A. Karthikeyan, V. Bhojwani, A Comprehensive Review of Effect of Biodiesel Additives on Properties, Performance, and Emission, IOP Conf. Ser. Mater. Sci. Eng. 197, 012015 (2017). [CrossRef] [Google Scholar]
  7. D. Unlu, N. Boz, O. Ilgen, N. Hilmioglu, Improvement of fuel properties of biodiesel with bioadditive ethyl levulinate, Open Chem. 16 647-652 (2018). [CrossRef] [Google Scholar]
  8. D. Di Menno Di Bucchianico, Y. Wang, J.-C. Buvat, Y. Pan, V. Casson Moreno, S. Leveneur, Production of levulinic acid and alkyl levulinates: a process insight, Green Chem. 24 614-646 (2022). [CrossRef] [Google Scholar]
  9. J. Han, J. Kim, Process Simulation and Optimization of 10-MW EFB Power Plant, in: Comput. Aided Chem. Eng., Elsevier, 723-729 (2018). [CrossRef] [Google Scholar]
  10. Rahmayetty, Y. Whulanza, Sukirno, S.F. Rahman, E.A. Suyono, M. Yohda, M. Gozan, Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production, Biocatal. Agric. Biotechnol. 16, 683691 (2018). [CrossRef] [Google Scholar]
  11. Yustinah, N. Hidayat, R. Alamsyah, A.M. Roslan, H. Hermansyah, M. Gozan, Production of polyhydroxybutyrate from oil palm empty fruit bunch (OPEFB) hydrolysates by Bacillus cereus suaeda B-001, Biocatal. Agric. Biotechnol. 18, 101019 (2019). [CrossRef] [Google Scholar]
  12. S.Z. Amraini, L.P. Ariyani, H. Hermansyah, S. Setyahadi, S.F. Rahman, D.-H. Park, M. Gozan, Production and characterization of cellulase from E. coli EgRK2 recombinant based oil palm empty fruit bunch, Biotechnol. Bioprocess Eng. 22, 287295 (2017). [CrossRef] [Google Scholar]
  13. M. Gozan, J.R.H. Panjaitan, D. Tristantini, R. Alamsyah, Y.J. Yoo, Evaluation of Separate and Simultaneous Kinetic Parameters for Levulinic Acid and Furfural Production from Pretreated Palm Oil Empty Fruit Bunches, Int. J. Chem. Eng. 2018 1-12 (2018). [CrossRef] [Google Scholar]
  14. N. Hidayah, I.U. Wusko, Characterization and Analysis of Oil Palm Empty Fruit Bunch (OPEFB) Waste of PT Kharisma Alam Persada South Borneo, Maj. Obat Tradis. 25 (2020). [Google Scholar]
  15. D. Setyaningsih, Uju, N. Muna, Isroi, N.B. Suryawan, A.A. Nurfauzi, Cellulose nanofiber isolation from palm oil Empty Fruit Bunches (EFB) through strong acid hydrolysis, IOP Conf. Ser. Earth Environ. Sci. 141, 012027 (2018). [CrossRef] [Google Scholar]
  16. A.A. Kamoldeen, C.K. Lee, W.N. Wan Abdullah, C.P. Leh, Enhanced ethanol production from mild alkali-treated oil-palm empty fruit bunches via co-fermentation of glucose and xylose, Renew. Energy 107 113-123 (2017). [CrossRef] [Google Scholar]
  17. C. Chang, G. Xu, X. Jiang, Production of ethyl levulinate by direct conversion of wheat straw in ethanol media, Bioresour. Technol. 121 93-99 (2012). [CrossRef] [Google Scholar]
  18. R. Le Van Mao, Q. Zhao, G. Dima, D. Petraccone, New Process for the Acid-Catalyzed Conversion of Cellulosic Biomass (AC3B) into Alkyl Levulinates and Other Esters Using a Unique One-Pot System of Reaction and Product Extraction, Catal. Lett. 141 271-276 (2011). [CrossRef] [Google Scholar]
  19. Q.-W. Zhang, L.-G. Lin, W.-C. Ye, Techniques for extraction and isolation of natural products: a comprehensive review, Chin. Med. 13, 20 (2018). [CrossRef] [Google Scholar]
  20. J. Tan, Q. Liu, L. Chen, T. Wang, L. Ma, G. Chen, Efficient production of ethyl levulinate from cassava over Al 2 (SO 4) 3 catalyst in ethanol-water system, J. Energy Chem. 26 115-120 (2017). [CrossRef] [Google Scholar]
  21. G.-Z. Xu, C. Chang, W.-N. Zhu, B. Li, X.-J. Ma, F.-G. Du, A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts, Chem. Pap. 67 (2013). [Google Scholar]
  22. S. Kang, J. Fu, N. Zhou, R. Liu, Z. Peng, Y. Xu, Concentrated Levulinic Acid Production from Sugar Cane Molasses, Energy Fuels 32 3526-3531 (2018). [CrossRef] [Google Scholar]
  23. L. Peng, L. Lin, J. Zhang, J. Zhuang, B. Zhang, Y. Gong, Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides, Molecules 15 5258-5272 (2010). [CrossRef] [PubMed] [Google Scholar]
  24. M. Signoretto, S. Taghavi, E. Ghedini, F. Menegazzo, Catalytic Production of Levulinic Acid (LA) from Actual Biomass, Molecules 24, 2760 (2019). [CrossRef] [PubMed] [Google Scholar]
  25. Z. Zhi, N. Li, Y. Qiao, X. Zheng, H. Wang, X. Lu, Kinetic study of levulinic acid production from corn stalk at relatively high temperature using FeCl3 as catalyst: A simplified model evaluated, Ind. Crops Prod. 76 672-680 (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.