Open Access
Issue
E3S Web Conf.
Volume 503, 2024
The 9th International Symposium on Applied Chemistry in conjuction with the 5th International Conference on Chemical and Material Engineering (ISAC-ICCME 2023)
Article Number 08002
Number of page(s) 10
Section Polymer and Macromolecular Chemistry
DOI https://doi.org/10.1051/e3sconf/202450308002
Published online 20 March 2024
  1. Gökçe E. Rethinking sustainability: A research on starch based bioplastic. J Sustain Constr Mater Technol. 3(3):249-60. 2018 [CrossRef] [Google Scholar]
  2. Asrofi M., Sapuan S.M., Ilyas R.A., Ramesh M., Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: Effect of time duration of ultrasonication (Bath-Type). Mater Today Proc [Internet]. 46(xxxx):1626-30. Available from: https://doi.org/10.1016/j.matpr.2020.07.254.2020 [Google Scholar]
  3. Mojibayo I., Samson A.O., Johnson O.Y., Joshua lagunju O., S.A A. A Preliminary Investigation Of Cassava Starch Potentials As Natural Polymer In Bioplastic Production. Am J Interdiscip Innov Res. 02(09):31-9. 2020 [Google Scholar]
  4. Putra E.P.D., Thamrin E.S., Saputra H., Effect of Dragon Fruit Skin Extract (Hylocereus costaricensis) on Bio-plastic Physical and Mechanical Properties of Cassava Starch and Polyvinyl Alcohol. IOP Conf Ser Earth Environ Sci. 258(1). 2019 [Google Scholar]
  5. Nasihin Z.D., Masruri M., Warsito W., Srihardyastutie A., Preparation of Nanocellulose Bioplastic with a Gradation Color of Red and Yellow. IOP Conf Ser Mater Sci Eng. 833(1). 2020 [Google Scholar]
  6. Rahman A., Miller C.D., Microalgae as a Source of Bioplastics [Internet]. Algal Green Chemistry: Recent Progress in Biotechnology. Elsevier B.V.; 121-138 p. Available from: http://dx.doi.org/10.1016/B978-0-444-63784-0.00006-0. 2017 [CrossRef] [Google Scholar]
  7. Cinar S.O., Chong Z.K., Kucuker M.A., Wieczorek N., Cengiz U., Kuchta K., Bioplastic production from microalgae: A review. Int J Environ Res Public Health. 17(11):1-21. 2020 [Google Scholar]
  8. Priyanka S., Varsha R., Verma R., Ayenampudi S.B., Spirulina: A Spotlight on Its Nutraceutical Properties And Food Processing Applications. J Microbiol Biotech Food Sci / Priyanka et al. 2023:12 (6) e4785. https://doi.org/10.55251/jmbfs.4785 [CrossRef] [Google Scholar]
  9. Jamilatun S., Rahayu A., Pradana Y.S., Budhijanto, Rochmadi, Budiman A. Bio-Oil Characterizations of Spirulina platensis Residue (SPR) Pyrolysis Products for Renewable Energy Development. Key Engineering Materials vol. 849, pp 47-52 [Google Scholar]
  10. Iamtham S., Kaewkam A., Chanprame S., Pan-utai W. Effect of Spirulina biomass residue on yield and cordycepin and adenosine production of Cordyceps militaris culture. Bioresource Technology Reports Vol 17, February 2022, 100893. https://doi.org/10.1016/j.biteb.2021.100893 [CrossRef] [Google Scholar]
  11. Dianursanti, Noviasari C., Windiani L., Gozan M., Effect of compatibilizer addition in Spirulina platensis based bioplastic production. AIP Conf Proc. 2092(April). 2019 [Google Scholar]
  12. Dianursanti, Gozan M., Noviasari C., The effect of glycerol addition as plasticizer in Spirulina platensis based bioplastic. E3S Web Conf. 67:11-4. 2018 [Google Scholar]
  13. Zhang C., Wang C., Cao G., Wang D., Ho S.H. A sustainable solution to plastics pollution: An eco-friendly bioplastic film production from high-salt contained Spirulina sp. residues. J Hazard Mater [Internet]. 388(October):121773. Available from: https://doi.org/10.1016/j.jhazmat.2019.121773.2020 [CrossRef] [Google Scholar]
  14. Simonic M., Zemljic F. Production of bioplastic material from algal biomass. Chem Ind Chem Eng Q. 27(1):79-84. 2021 [CrossRef] [Google Scholar]
  15. Perotto G., Ceseracciu L., Simonutti R., Paul U.C., Guzman-Puyol S., Tran T.N., et al. Bioplastics from vegetable waste: Via an eco-friendly water-based process. Green Chem. 20(4):894-902. 2018 [CrossRef] [Google Scholar]
  16. Agustina S., Aidha N.N., Oktarina E., Haruminda J.H. Optimasi Proses Ekstraksi Karoten Dan Klorofil Dari Spirulina Platensis Dengan Teknologi Karbon Dioksida (CO2) Superkritis Menggunakan Metode Permukaan Tanggap. J Kim dan Kemasan. 41(2):95. 2019 [CrossRef] [Google Scholar]
  17. Ciapponi R., Turri S., Levi M. Mechanical reinforcement by microalgal biofiller in novel thermoplastic biocompounds from plasticized gluten. Materials (Basel). 12(9). 2019 [Google Scholar]
  18. Guru Moorthy A., Abdul-Latif N.I.S., Ong M.Y., Shamsuddin A.H., Nomanbhay S., Enhancement of biodegradability and tensile characteristics of composite plastic film with spirulina algal biomass. IOP Conf Ser Earth Environ Sci. 2020;476(1). [Google Scholar]
  19. Velho S.R.K., Brum L.F.W., Petter C.O., dos Santos J.H.Z., Šimunić Š., Kappa W.H. Development of structured natural dyes for use into plastics. Dye Pigment. 136:24854. 2017 [Google Scholar]
  20. Virgili T., Pasini M., Guizzardi M., Tizro N., Bollani M. Natural Dyes Used as Organic Coatings UV Protecting for Food Packages. Coatings. 12(3):1-9.2022 [Google Scholar]
  21. Alhefeiti M., Chandra F., Gupta R.K., Saleh N., Dyeing Non-Recyclable Polyethylene Plastic with Photoacid Phycocyanobilin from Spirulina Algae: Ultrafast Photoluminescence Studies. Polymers (Basel). 14(22). 2022 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.