Open Access
Issue
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 01015
Number of page(s) 9
Section Materials Science
DOI https://doi.org/10.1051/e3sconf/202450501015
Published online 25 March 2024
  1. E.P. George, D. Raabe, and R.O. Ritchie, High-entropy alloys. NaT. Rev. Mat, 4, 515–534 (2019) [Google Scholar]
  2. M.H. Tsai, and J.-W. Yeh, High-entropy alloys: a critical review. MaT. Res. Let, 2(3): p. 107–123 (2014) [CrossRef] [Google Scholar]
  3. R. Nair, et al., Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy. Ultra. Sono, 41: p. 252–260 (2018) [CrossRef] [Google Scholar]
  4. Z.U. Arif, M.Y. Khalid, and E. Ur Rehman, Laser-aided additive manufacturing of high entropy alloys: Processes, properties, and emerging applications. Man. Proc, 78, 131–171 (2022) [CrossRef] [Google Scholar]
  5. V. Geanta, and I. Voiculescu, Characterization and testing of high-entropy alloys from AlCrFeCoNi system for military applications, in Engineering Steels and High Entropy-Alloys. Intech.Open. (2019) [Google Scholar]
  6. Y. Meng, et al., Effect of vanadium on the microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr-ti alloy of 6XXX series. Allo. Comp, 573, 102–111. (2013) [CrossRef] [Google Scholar]
  7. K. Arshad, et al., Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys. Nucl. Mate. 455, 96–100 (2014) [CrossRef] [Google Scholar]
  8. W. Zhang, et al., Micro/nano-mechanical behaviors of individual FCC, BCC and FCC/BCC interphase in a high-entropy alloy. Mate. Scie. tech, 114, 102–110 (2022) [CrossRef] [Google Scholar]
  9. A.O. Moghaddam, et al., Additive manufacturing of high entropy alloys: A practical review. Mate. Scie. tech, 77: p. 131–162 (2021) [CrossRef] [Google Scholar]
  10. M.H. Elahinia, et al., Manufacturing and processing of Niti implants: A review. Prog. Mate. Scie, 57(5): p. 911–946 (2012) [CrossRef] [Google Scholar]
  11. Y.A. Alshataif, et al., Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review. Meta. Mate. Inte, 26: p. 1099–1133 (2020) [CrossRef] [Google Scholar]
  12. S. Varalakshmi, M. Kamaraj, and B. Murty, Synthesis and characterization of nanocrystalline AlFetiCrZnCu high entropy solid solution by mechanical alloying. Allo. Comp, 460, 253–257 (2008) [CrossRef] [Google Scholar]
  13. S. Rajendrachari, An overview of high-entropy alloys prepared by mechanical alloying followed by the characterization of their microstructure and various properties. Alloys, 1, 116–132 (2022) [CrossRef] [Google Scholar]
  14. K. Masemola, P. Popoola, and N. Malatji, The effect of annealing temperature on the microstructure, mechanical and electrochemical properties of arc-melted AlCrFeMnNi equi-atomic High entropy alloy. Mate. Rese. tech, 9, 5241–5251 (2020) [CrossRef] [Google Scholar]
  15. S. Güler, E.D. Alkan, and M. Alkan, Vacuum arc melted and heat treated AlCoCrFeNitiX based high-entropy alloys: thermodynamic and microstructural investigations. Allo. Comp, 903,163901 (2022) [CrossRef] [Google Scholar]
  16. Y. Shi, et al., Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corr. Scie, 133, 120–131 (2018) [CrossRef] [Google Scholar]
  17. Y. Chen, et al., Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corr. Scie, 47,2257–2279 (2005) [CrossRef] [Google Scholar]
  18. X. Yin, and S. Xu. Properties and preparation of high entropy alloys. in MAtEC web of conferences. EDP Sciences (2018) [Google Scholar]
  19. Y. Dong, et al., Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mate. Desi, 57, 67–72 (2014) [CrossRef] [Google Scholar]
  20. M.R. Chen, et al., Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al 0.5 CoCrCuFeNi high-entropy alloy. Meta. Mate. trans.A, 2006. 37,1363–1369 (2006) [CrossRef] [Google Scholar]
  21. S. Duan, et al., Effects of V Addition on Microstructural Evolution and Mechanical Properties of AlCrFe2Ni2 High-Entropy Alloys. Acta. Meta.Sini.(English Letters), 36, 391–404 (2023) [CrossRef] [Google Scholar]
  22. C. Min-Rui, et al., Effect of Vanadium Addition on the Microstructure, Hardness, and Wear Resistance of Al sub 0.5 CoCrCuFeNi High-Entropy Alloy. Meta. Mate. trans, 37, 1363 (2006) [CrossRef] [Google Scholar]
  23. B. Nawaz, et al., Effect of ferrite/martensite on microstructure evolution and mechanical properties of ultrafine vanadium dual-phase steel. Mate. Eng. Perf, 31, 4305–4317 (2022) [CrossRef] [Google Scholar]
  24. J. Jabinth, and N. Selvakumar, Enhancing the mechanical, wear behaviour of copper matrix composite with 2V-Gr as reinforcemenT. Proceedings of the Institution of Mechanical Engineers, Part J: Eng.trib, 235, 1405–1419 (2021) [CrossRef] [Google Scholar]
  25. R. Moskalyk, and A. Alfantazi, Processing of vanadium: a review. Mine. Eng, 16, 793–805 (2003) [CrossRef] [Google Scholar]
  26. E. Kusano, and J.A. Theil, Effects of microstructure and nonstoichiometry on electrical properties of vanadium dioxide films. Journal of Vacuum Science & technology A: Vacu. Surf. Fil, 7, 1314–1317 (1989) [CrossRef] [Google Scholar]
  27. J.K. Ren, et al., Role of vanadium additions on tensile and cryogenic-temperature charpy impact properties in hot-rolled high-Mn austenitic steels. Mate. Scie. Eng: A. 811, 141063 (2021) [CrossRef] [Google Scholar]
  28. Y. Han, et al., Effect of nano-vanadium nitride on microstructure and properties of sintered Fe-Cu-based diamond composites. Refr. Metal. Hard. Mate, 91, 105256 (2020) [CrossRef] [Google Scholar]
  29. G. Tęcza, Changes in Microstructure and Abrasion Resistance during Miller test of Hadfield High-Manganese Cast Steel after the Formation of Vanadium Carbides in Alloy Matrix. Mate, 15, 1021 (2022) [CrossRef] [Google Scholar]
  30. C. Raahgini, and D. Verdi, Abrasive wear performance of laser cladded Inconel 625 based metal matrix composites: Effect of the vanadium carbide reinforcement phase contenT. Surf. CoaT. tech, 429, 127975 (2022) [CrossRef] [Google Scholar]
  31. Z. Ye, et al., The influence of vanadium element on the microstructure and mechanical properties of (FeCoNi) 100-xVx high-entropy alloys. Mate. Chara, 192, 112232 (2022) [CrossRef] [Google Scholar]
  32. X. Wen, et al., In-situ synthesis of nano-lamellar Ni1. 5CrCoFe0. 5Mo0. 1Nbx eutectic high-entropy alloy coatings by laser cladding: Alloy design and microstructure evolution. Surf. CoaT. tech, 405, 126728 (2021) [CrossRef] [Google Scholar]
  33. Z. Chen, et al., Effects of Co and ti on microstructure and mechanical behavior of Al0. 75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mate. Scie. Eng: A. 648, 217–224 (2015) [CrossRef] [Google Scholar]
  34. J. Sun, et al., Effects of alloying elements and microstructure on stainless steel corrosion: A review. Ste. Rese. Inte, 93, 2100450 (2022) [CrossRef] [Google Scholar]
  35. I. Ferretto, et al., Shape recovery performance of a (V, C)-containing Fe-Mn-Si-Ni-Cr shape memory alloy fabricated by laser powder bed fusion. Mate. Rese. tech, 20, 3969–3984 (2022) [CrossRef] [Google Scholar]
  36. M. Geetha, et al., Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog. Mate. Scie, 54, 397–425 (2009) [CrossRef] [Google Scholar]
  37. Z. Wang, et al., Theoretical investigation of molybdenum/tungsten-vanadium solid solution alloy membranes: thermodynamic stability and hydrogen permeation. Memb. Scie, 608, 118200 (2020) [CrossRef] [Google Scholar]
  38. W.R. Jian, et al., Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi. Acta. Mate, 199, 352–369 (2020) [CrossRef] [Google Scholar]
  39. S. Liu, et al., Effect of B4C and MOS2 reinforcement on micro structure and wear properties of aluminum hybrid composite for automotive applications. Composites Part B: Eng, 176, 107329 (2019) [CrossRef] [Google Scholar]
  40. V. Selvakumar, S. Muruganandam, and N. Senthilkumar, Evaluation of mechanical and tribological behavior of Al-4% Cu-x% SiC composites prepared through powder metallurgy technique. Trans. Indi. InsT. Meta, 70, 1305–1315 (2017) [CrossRef] [Google Scholar]
  41. Y. Zhou, et al., The effects of triple junctions and grain boundaries on hardness and Young’s modulus in nanostructured Ni-P. Scri. Mate, 48, 825–830 (2003) [CrossRef] [Google Scholar]
  42. T. Tokunaga, K. Kaneko, and Z. Horita, Production of aluminum-matrix carbon nanotube composite using high pressure torsion. Mate. Scie. Eng. A, 490, 300–304 (2008) [CrossRef] [Google Scholar]
  43. T. Britton, D. Randman, and A. Wilkinson, Nanoindentation study of slip transfer phenomenon at grain boundaries. Mate. Rese, 24, 607–615 (2009) [CrossRef] [Google Scholar]
  44. Q. Zhou, et al., Strain rate sensitivity of Cu/ta multilayered films: Comparison between grain boundary and heterophase interface. Scri. Mate, 2016. 111, 123–126 (2016) [Google Scholar]
  45. R. Ke, et al., Grain refinement strengthening mechanism of an austenitic stainless steel: Critically analyze the impacts of grain interior and grain boundary. Mate. Rese. tech, 17, 2999–3012 (2022) [CrossRef] [Google Scholar]
  46. S. Pathak, et al., Strong, ductile, and thermally stable bcc-Mg nanolaminates. Scie. Repo, 7, 8264 (2017) [CrossRef] [Google Scholar]
  47. L. Liu, et al., Nanoprecipitate‐strengthened high‐entropy alloys. Adv. Scie, 8, 2100870 (2021) [CrossRef] [Google Scholar]
  48. Y. Cai, et al., Effect of high temperature heat treatment on microstructure and properties of FeCoCrNiAl high-entropy alloy laser cladding layer. Mate. Chara, 191, 112137 (2022) [CrossRef] [Google Scholar]
  49. T.S. Rajan, et al., Heat treatment: principles and techniques. 2011: PHI Learning PvT. Ltd (2011) [Google Scholar]
  50. G. Krauss, Tempering of lath martensite in low and medium carbon steels: assessment and challenges. Ste. Rese. Inter, 88, 1700038 (2017) [CrossRef] [Google Scholar]
  51. C.M. Lin, and H.-L. Tsai, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0. 5CoCrFeNi alloy. Inter, 19, 288–294 (2011) [Google Scholar]
  52. K. Chen, et al., Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk. Inter. Mine. Meta. Mate, 26, 889–900 (2019) [CrossRef] [Google Scholar]
  53. P.J. Blau, et al., Tribological investigation of titanium-based materials for brakes. Wear, 263, 1202–1211 (2007) [CrossRef] [Google Scholar]
  54. E. Ezugwu, Key improvements in the machining of difficult-to-cut aerospace superalloys. Mach.too. Manu, 45, 1353–1367 (2005) [CrossRef] [Google Scholar]
  55. E. Padenko, et al., Mechanical and abrasion wear properties of hydrogenated nitrile butadiene rubber of identical hardness filled with carbon black and silica. Rein. Plas. Comp, 35, 81–91 (2016) [CrossRef] [Google Scholar]
  56. T. Singh, et al., Influence of wollastonite shape and amount on tribo-performance of non-asbestos organic brake friction composites. Wear, 386, 157–164 (2017) [CrossRef] [Google Scholar]
  57. Z. Li, et al., Design of tiZrNbta multi-principal element alloys with outstanding mechanical properties and wear resistance. Mate. Scie. Eng: A, 845, 143203 (2022) [CrossRef] [Google Scholar]
  58. P. Agrawal, et al., Friction stir gradient alloying: a high-throughput method to explore the influence of V in enabling HCP to BCC transformation in a γ-FCC dominated high entropy alloy. App. Mate. tod, 21, 100853 (2020) [Google Scholar]
  59. A. Shokrani, V. Dhokia, and S.T. Newman, Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Mach. too. Manu, 57, 83–101 (2012) [CrossRef] [Google Scholar]
  60. S.P. Da Silva, et al., Surface modification of AISI H13 steel by die-sinking electrical discharge machining and tiAlN coating: A promising hybrid technique to improve wear resistance. Wear, 462, 203509 (2020) [CrossRef] [Google Scholar]
  61. S.E. Houdková, Smazalová, and Z. Pala, Effect of heat treatment on the microstructure and properties of HVOF-sprayed Co-Cr-W coating. Ther. Spr. tech, 25, 546–557 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.