Open Access
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 01018
Number of page(s) 8
Section Materials Science
Published online 25 March 2024
  1. J.J.W.S. Anderson and T.W. Supply, “The environmental benefits of water recycling and reuse,” vol. 3, no. 4, pp. 1–10, 2003. [Google Scholar]
  2. M.M. Mekonnen and A.Y. Hoekstra, “Four billion people facing severe water scarcity,” vol. 2, no. 2, p. e1500323, 2016. [Google Scholar]
  3. I. Haddeland et al., “Global water resources affected by human interventions and climate change,” (in eng), Proc Natl Acad Sci U S A, vol. 111, no. 9, pp. 3251–6, Mar 4 2014. [Google Scholar]
  4. J.S. Famiglietti, “The global groundwater crisis,” Nature Climate Change, vol. 4, no. 11, pp. 945–948, 2014/11/01 2014. [Google Scholar]
  5. J.E. Gu et al., “Molecular layer-by-layer assembled thin-film composite membranes for water desalination,” (in eng), Adv Mater, vol. 25, no. 34, pp. 4778–82, Sep 14 2013. [CrossRef] [PubMed] [Google Scholar]
  6. J.R. Werber, C.O. Osuji, and M. Elimelech, “Materials for next-generation desalination and water purification membranes,” Nature Reviews Materials, vol. 1, no. 5, p. 16018, 2016/04/05 2016. [Google Scholar]
  7. M. Elimelech and W.A. Phillip, “The Future of Seawater Desalination: Energy, technology, and the Environment,” Science, vol. 333, no. 6043, pp. 712–717, 2011/08/05 2011. [CrossRef] [PubMed] [Google Scholar]
  8. J. Zhu et al., “Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane,” Journal of Materials Chemistry A, 10.1039/C5tA08024J vol. 4, no. 5, pp. 1980–1990, 2016. [Google Scholar]
  9. X.-F. Sun et al., “Graphene oxide-silver nanoparticle membrane for biofouling control and water purification,” Chemical Engineering Journal, vol. 281, pp. 53–59, 2015/12/01/ 2015. [CrossRef] [Google Scholar]
  10. S.K. Srivastava, M. Guix, and O.G. Schmidt, “Wastewater Mediated Activation of Micromotors for Efficient Water Cleaning,” (in eng), Nano Lett, vol. 16, no. 1, pp. 817–21, Jan 13 2016. [Google Scholar]
  11. L. Valentino, M. Matsumoto, W.R. Dichtel, and B.J. Mariñas, “Development and Performance Characterization of a Polyimine Covalent Organic Framework thin-Film Composite Nanofiltration Membrane,” Environmental Science & technology, vol. 51, no. 24, pp. 14352–14359, 2017/12/19 2017. [Google Scholar]
  12. R.J. Petersen, “Composite reverse osmosis and nanofiltration membranes,” Journal of Membrane Science, vol. 83, no. 1, pp. 81–150, 1993/08/12/ 1993. [Google Scholar]
  13. J.E. Cadotte and R.J. Petersen, “Thin-Film Composite Reverse-Osmosis Membranes: Origin, Development, and Recent Advances,” in Synthetic Membranes:, vol. 153(ACS Symposium Series, no. 153): AMERICAN CHEMICAL SOCIEtY, 1981, pp. 305–326. [Google Scholar]
  14. F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, C. Klöck, M. O’Keeffe, and O.M. Yaghi, “A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework,” Journal of the American Chemical Society, vol. 131, no. 13, pp. 4570–4571, 2009/04/08 2009. [CrossRef] [PubMed] [Google Scholar]
  15. A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, and O.M. Yaghi, “Porous, crystalline, covalent organic frameworks,” (in eng), Science (New York, N.Y.), vol. 310, no. 5751, pp. 1166–1170, 2005/11// 2005. [Google Scholar]
  16. S. Wan, J. Guo, J. Kim, H. Ihee, and D. Jiang, “A belt-shaped, blue luminescent, and semiconducting covalent organic framework,” (in eng), Angew Chem Int Ed Engl, vol. 47, no. 46, pp. 8826–30, 2008. [CrossRef] [PubMed] [Google Scholar]
  17. S. Wan, J. Guo, J. Kim, H. Ihee, and D. Jiang, “A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation,” (in eng), Angew Chem Int Ed Engl, vol. 48, no. 30, pp. 5439–42, 2009. [CrossRef] [PubMed] [Google Scholar]
  18. X. Ding et al., “Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity,” (in eng), Angew Chem Int Ed Engl, vol. 50, no. 6, pp. 1289–93, Feb 7 2011. [CrossRef] [PubMed] [Google Scholar]
  19. S. Wan et al., “Covalent Organic Frameworks with High Charge Carrier Mobility,” Chemistry of Materials, vol. 23, no. 18, pp. 4094–4097, 2011/09/27 2011. [Google Scholar]
  20. H.M. El-Kaderi et al., “Designed synthesis of 3D covalent organic frameworks,” (in eng), Science, vol. 316, no. 5822, pp. 268–72, Apr 13 2007. [CrossRef] [PubMed] [Google Scholar]
  21. X. Ding et al., “An n-channel two-dimensional covalent organic framework,” (in eng), J Am Chem Soc, vol. 133, no. 37, pp. 14510–3, Sep 21 2011. [Google Scholar]
  22. J.W. Colson et al., “Oriented 2D covalent organic framework thin films on single-layer graphene,” (in eng), Science, vol. 332, no. 6026, pp. 228–31, Apr 8 2011. [Google Scholar]
  23. Z. Yang, X.-H. Ma, and C.Y. Tang, “Recent development of novel membranes for desalination,” Desalination, vol. 434, pp. 37–59, 2018/05/15/ 2018. [CrossRef] [Google Scholar]
  24. A. Al Mayyahi, Membranes, vol. 8, p. 8, 2018. [CrossRef] [PubMed] [Google Scholar]
  25. P.H.H. Duong, V.A. Kuehl, B. Mastorovich, J.O. Hoberg, B.A. Parkinson, and K.D. Li-Oakey, “Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes,” Journal of Membrane Science, vol. 574, pp. 338–348, 2019/03/15/ 2019. [Google Scholar]
  26. H. Fan, J. Gu, H. Meng, A. Knebel, and J. Caro, “High-Flux Membranes Based on the Covalent Organic Framework COF-LZU1 for Selective Dye Separation by Nanofiltration,” vol. 57, no. 15, pp. 4083–4087, 2018. [Google Scholar]
  27. C. Li, S. Li, L. Tian, J. Zhang, B. Su, and M.Z. Hu, “Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (tFN) membranes for high-flux organic solvent nanofiltration (OSN),” Journal of Membrane Science, vol. 572, pp. 520–531, 2019/02/15/ 2019. [Google Scholar]
  28. Y.-X. Fang, Y.-F. Lin, Z.-L. Xu, J.-W. Mo, and P.-P. Li, “A novel clover-like COFs membrane fabricated via one-step interfacial polymerization for dye/salt separation,” Journal of Membrane Science, vol. 673, p. 121470, 2023/05/05/ 2023. [Google Scholar]
  29. S. Patial et al., “Rational design, structure properties, and synthesis strategies of dual-pore covalent organic frameworks (COFs) for potent applications: A review,” Environmental Research, vol. 218, p. 114982, 2023/02/01/ 2023. [Google Scholar]
  30. P. Puthiaraj, Y.-R. Lee, S. Zhang, and W.-S. Ahn, “Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis,” Journal of Materials Chemistry A, 10.1039/C6tA06089G vol. 4, no. 42, pp. 16288–16311, 2016. [Google Scholar]
  31. Y. Zhang and S.N. Riduan, “Functional porous organic polymers for heterogeneous catalysis,” Chemical Society Reviews, vol. 41, no. 6, pp. 2083–2094, 2012. [Google Scholar]
  32. Z. Wang, C. Liu, Y. Huang, Y. Hu, and B. Zhang, “Covalent triazine framework-supported palladium as a ligand-free catalyst for the selective double carbonylation of aryl iodides under ambient pressure of CO,” Chemical Communications, 10.1039/C5CC10389D vol. 52, no. 14, pp. 2960–2963, 2016. [CrossRef] [PubMed] [Google Scholar]
  33. A.V. Bavykina et al., “Shaping Covalent triazine Frameworks for the Hydrogenation of Carbon Dioxide to Formic Acid,” vol. 8, no. 13, pp. 2217–2221, 2016. [Google Scholar]
  34. J. Liu, Y. Hu, and J. Cao, “Covalent triazine-based frameworks as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media,” Catalysis Communications, vol. 66, pp. 91–94, 2015/06/05/ 2015. [CrossRef] [Google Scholar]
  35. S. Ren et al., “Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis,” (in eng), Adv Mater, vol. 24, no. 17, pp. 2357–61, May 2 2012. [CrossRef] [PubMed] [Google Scholar]
  36. P. Kuhn, M. Antonietti, and A. Thomas, “Porous, covalent triazine-based frameworks prepared by ionothermal synthesis,” (in eng), Angew Chem Int Ed Engl, vol. 47, no. 18, pp. 3450–3, 2008. [CrossRef] [PubMed] [Google Scholar]
  37. H. Lim, M.C. Cha, and J.Y. Chang, “Preparation of Microporous Polymers Based on 1,3,5-triazine Units Showing High CO2 Adsorption Capacity,” vol. 213, no. 13, pp. 1385–1390, 2012. [Google Scholar]
  38. P. Puthiaraj, S.-M. Cho, Y.-R. Lee, and W.-S. Ahn, “Microporous covalent triazine polymers: efficient Friedel-Crafts synthesis and adsorption/storage of CO2 and CH4,” Journal of Materials Chemistry A, 10.1039/C5tA00665A vol. 3, no. 13, pp. 6792–6797, 2015. [Google Scholar]
  39. S. Dey, A. Bhunia, D. Esquivel, and C. Janiak, “Covalent triazine-based frameworks (CtFs) from triptycene and fluorene motifs for CO2 adsorption,” Journal of Materials Chemistry A, 10.1039/C6tA00638H vol. 4, no. 17, pp. 6259–6263, 2016. [Google Scholar]
  40. “<utilization-of-cyanuric-chloride-in-the-synthesis-of-some-novel-chalcones-and-their-derivatives.pdf>.” [Google Scholar]
  41. A. Mirzaei and G. Neri, “Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review,” Sensors and Actuators B: Chemical, vol. 237, pp. 749–775, 2016/12/01/ 2016. [Google Scholar]
  42. W.H. Chen, J.C. Tang, X.W. Shi, N. Ye, Z.H. Yue, and X.H. Lin, “Synthesis and formation mechanism of high-purity ti3AlC2 powders by microwave sintering,” INtERNAtIONAL JOURNAL OF APPLIED CERAMIC tECHNOLOGY, vol. 17, no. 2, pp. 778–789, MAR-APR 2020. [Google Scholar]
  43. S. Nain, R. Singh, and S.J.A.J.O.C.-S.A. Ravichandran, “Importance of microwave heating in organic synthesis,” vol. 2, no. 2, pp. 94–104, 2019. [Google Scholar]
  44. M.B. Gawande, S.N. Shelke, R. Zboril, and R.S. Varma, “Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics,” Accounts of Chemical Research, vol. 47, no. 4, pp. 1338–1348, 2014/04/15 2014. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.