Open Access
Issue
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 01019
Number of page(s) 8
Section Materials Science
DOI https://doi.org/10.1051/e3sconf/202450501019
Published online 25 March 2024
  1. Arora, G.S., Gupta, A., & Saxena, K.K. (2024). Evaluation of mechanical, microstructural, tribological characteristics and cytocompatibility in AZ31 hybrid bio-composite reinforced with tiO2-HAp. Results in Surfaces and Interfaces, 14, 100174. [Google Scholar]
  2. Poul Raj IL, Valanarasu, S., Hariprasad, K., et al. Enhancement of optoelectronic parameters of Nd-doped ZnO nanowires for photodetector applications. Opt Mater (Amst). 2020;109:110396. [Google Scholar]
  3. Kalpana, G., Kumar, P.V., Aljawarneh, S., et al. Shifted Adaption Homomorphism Encryption for Mobile and Cloud Learning. Comput Electr Eng. 2018;65:178–195. [Google Scholar]
  4. Chaudhary, N., Dikshit, M.K., Kumar, C.L., Sonia, P., Pathak, V.K., Saxena, K.K., … & Salmaan, N.U. (2023). Sustainable mechanical properties evaluation for graphene reinforced Epoxy/Kevlar fiber using MD simulations. Journal of Experimental Nanoscience, 18(1), 2246662. [CrossRef] [Google Scholar]
  5. Awasthi, A., Saxena, K.K., Dwivedi, R.K. An investigation on classification and characterization of bio materials and additive manufacturing techniques for bioimplants. Mater today Proc. 2021;44:2061–2068. [Google Scholar]
  6. Singh, P., Singh, A.K., Arun, V., & Dixit, H.K. (2016). Design and analysis of all-optical half-adder, halfsubtractor and 4-bit decoder based on SOA-MZI configuration. Optical and Quantum Electronics, 48, 1–14. [Google Scholar]
  7. Chang, R.Y.K., Okamoto, Y., Morales, S., et al. Hydrogel formulations containing non-ionic polymers for topical delivery of bacteriophages. Int J Pharm. 2021;605. [Google Scholar]
  8. Atchudan, R., Jebakumar Immanuel Edison T.N., Shanmugam, M., et al. Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Phys E Low-dimensional Syst Nanostructures. 2021;126:114417. [Google Scholar]
  9. Kumar P.S.S., Allamraju, K.V. A Review Of Natural Fiber Composites [Jute, Sisal, Kenaf]. Mater today Proc. 2019;18:2556–2562. [Google Scholar]
  10. Singh, L., Yahya, M.M., Singh, B., Sehgal, S., Saxena, K.K., & Mohammed, K.A. (2023). Investigation of the Effects of Overlapping Passes on Friction Stir Processed Aluminum Alloy 5083. Metal Science and Heat treatment, 1–5. [Google Scholar]
  11. Chandrappa, V., Basavapoornima, C., Kesavulu, C.R., Babu, A.M., Depuru, S.R., & Jayasankar, C.K. (2022). Spectral studies of Dy3+: zincphosphate glasses for white light source emission applications: a comparative study. Journal of Non-Crystalline Solids, 583, 121466. [Google Scholar]
  12. Jaffery, H.A., Sabri, M.F.M, Said, S.M., et al. Electrochemical corrosion behavior of Sn-0.7Cu solder alloy with the addition of bismuth and iron. J Alloys Compd. 2019;810:151925. [Google Scholar]
  13. Yadav, S., Yamasani, P., Kumar, S. Experimental studies on a micro power generator using thermo-electric modules mounted on a micro-combustor. Energy Convers Manag. 2015;99:1–7. [Google Scholar]
  14. Saxena, K.K., & Awasthi, A. (2020). Novel Additive Manufacturing Processes and techniques in Industry 4.0. In Handbook of Research on Integrating Industry 4.0 in Business and Manufacturing (pp. 439–455). IGI Global. [Google Scholar]
  15. Eltom, A., Zhong, G., Muhammad, A. Scaffold techniques and Designs in tissue Engineering Functions and Purposes: A Review. Adv Mater Sci Eng. 2019;2019. [Google Scholar]
  16. Keller, M.W., Crall, M.D. 6.15 Self-Healing Composite Materials. Compr Compos Mater II. 2018;431–453. [Google Scholar]
  17. Gupta, T. K., Budarapu, P.R., Chappidi, S.R., Yb, S.S., Paggi, M., & Bordas, S.P. (2019). Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 26(38), 6851–6877. [CrossRef] [PubMed] [Google Scholar]
  18. Yue, L., Jayapal, M., Cheng, X., et al. Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on Ndoped graphene sheets as high performance anode for sodium ion batteries. Appl Surf Sci. 2020;512:145686. [CrossRef] [Google Scholar]
  19. Paul, A., Kesharvani, S., Agrawal, A., Dwivedi, G., Singh, V., & Saxena, K.K. (2023). Mechanical and tribological properties of nano clay/PMMA composites extruded with a twin-screw extruder. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089231215224. [Google Scholar]
  20. Upadhyay, K.K., Arun, V., Srivastava, S., Mishra, N.K., & Shukla, N.K. (2019). A novel model of all-optical reversible XOR/XNOR logic gate on a single photonic circuiT. Indian Journal of Physics, 93, 1081–1094. [CrossRef] [Google Scholar]
  21. Chaudhary, K., Kandasubramanian, B. Self-Healing Nanofibers for Engineering Applications. Ind Eng Chem Res. 2022;61:3789–3816. [Google Scholar]
  22. Awasthi, A., Saxena, K.K., Arun, V. Sustainable and smart metal forming manufacturing process. Mater today Proc. 2021;44:2069–2079. [Google Scholar]
  23. Grover, T., Pandey, A., Kumari, S.T., Awasthi, A., Singh, B., Dixit, P., … & Saxena, K.K. (2020). Role of titanium in bio implants and additive manufacturing: An overview. Materials today: Proceedings, 26, 3071–3080. [Google Scholar]
  24. Das, R., Melchior, C., Karumbaiah, K.M. Self-healing composites for aerospace applications. Adv Compos Mater Aerosp Eng. 2016;333–364. [Google Scholar]
  25. Jilani, A., Hussain, S.Z., Khan, A.A.P., et al. Graphene-based material for self-healing: Mechanism, synthesis, characteristics, and applications. Self-Healing Compos Mater From Des to Appl. 2019;163–175. [Google Scholar]
  26. Pulikkalparambil, H., Sanjay, M.R., Siengchin, S., et al. Self-repairing hollow-fiber polymer composites. Self-Healing Compos Mater From Des to Appl. 2020;313–326. [Google Scholar]
  27. Mehboob, A., Rizvi, S.H.A., Chang, S.H., et al. Comparative study of healing fractured tibia assembled with various composite bone plates. Compos Sci technol. 2020;197. [Google Scholar]
  28. Chinke, S.L., Alegaonkar, P.S. Self-healing aspects of graphene oxide/polymer nanocomposites. Self-Healing Compos Mater From Des to Appl. 2019;285–312. [Google Scholar]
  29. Islam, S., Bhat, G. Progress and challenges in self-healing composite materials. Mater Adv. 2021;2:1896–1926. [Google Scholar]
  30. Siddiqui, V.U., Ansari, A., Khan, I., et al. Composite for self-repairing covering to hinder corrosion. Self-Healing Compos Mater From Des to Appl. 2019;209–224. [Google Scholar]
  31. Šupova, M. Substituted hydroxyapatites for biomedical applications: A review. Ceram InT. 2015;41:9203–9231. [CrossRef] [Google Scholar]
  32. Yamaguchi, M., Vu Anh, D., Sunatda, A. Self-repairing property of a polymer solid with enhanced segmental motion. Self-Healing Compos Mater From Des to Appl. 2019;87–102. [Google Scholar]
  33. Pandey, A., Awasthi, A., & Saxena, K.K. (2020). Metallic implants with properties and latest production techniques: a review. Advances in Materials and Processing technologies, 6(2), 405–440. [CrossRef] [Google Scholar]
  34. Gupta, N., Gupta, A., Saxena, K.K., et al. Mechanical and durability properties of geopolymer concrete composite at varying superplasticizer dosage. Mater today Proc. 2021;44:12–16. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.