Open Access
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 01026
Number of page(s) 10
Section Materials Science
Published online 25 March 2024
  1. Agarwal, K.M., Tyagi, R.K., Choubey, V., & Saxena, K.K. (2022). Mechanical behaviour of Aluminium Alloy AA6063 processed through ECAP with optimum die design parameters. Advances in Materials and Processing technologies, 8(2), 1901–1915. [CrossRef] [Google Scholar]
  2. Pandey, A., Awasthi, A., & Saxena, K.K. (2020). Metallic implants with properties and latest production techniques: a review. Advances in Materials and Processing technologies, 6(2), 405–440. [CrossRef] [Google Scholar]
  3. Kalpana, G., Kumar, P.V., Aljawarneh, S., & Krishnaiah, R.V. (2018). Shifted adaption homomorphism encryption for mobile and cloud learning. Computers & Electrical Engineering, 65, 178–195. [CrossRef] [Google Scholar]
  4. Atchudan, R., Edison, T.N.J.I., Shanmugam, M., Perumal, S., Somanathan, T., & Lee, Y.R. (2021). Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Physica E: Low-dimensional Systems and Nanostructures, 126, 114417. [Google Scholar]
  5. Demirel, A., Bezgin, T., & Sarı, Ş. (2021). Effects of root maturation and thickness variation in coronal mineral trioxide aggregate plugs under traumatic load on stress distribution in regenerative endodontic procedures: a 3-dimensional finite element analysis study. Journal of Endodontics, 47(3), 492–499. [Google Scholar]
  6. Agarwal, S., Saxena, K.K., Agrawal, V., Dixit, J.K., Prakash, C., Buddhi, D., & Mohammed, K.A. (2024). Prioritizing the barriers of green smart manufacturing using AHP in implementing industry 4.0: A case from Indian automotive industry. The tQM Journal, 36(1), 71–89. [Google Scholar]
  7. Kumar, P.S.S., & Allamraju, K.V. (2019). A review of natural fiber composites [Jute, Sisal, Kenaf]. Materials today: Proceedings, 18, 2556–2562. [Google Scholar]
  8. Baino, F. (2018). Bioactive glasses-when glass science and technology meet regenerative medicine. Ceramics International, 44(13), 14953–14966. [CrossRef] [Google Scholar]
  9. Nagata, J.Y., de Almeida Gomes, B.P.F., Lima, T.F.R., Murakami, L.S., de Faria, D.E., Campos, G.R., … & de Jesus Soares, A. (2014). Traumatized immature teeth treated with 2 protocols of pulp revascularization. Journal of endodontics, 40(5), 606–612. [Google Scholar]
  10. Chandrappa, V., Basavapoornima, C., Kesavulu, C.R., Babu, A.M., Depuru, S.R., & Jayasankar, C.K. (2022). Spectral studies of Dy3+: zincphosphate glasses for white light source emission applications: a comparative study. Journal of Non-Crystalline Solids, 583, 121466. [Google Scholar]
  11. Jaffery, H.A., Sabri, M.F.M., Said, S.M., Hasan, S.W., Sajid, I.H., Nordin, N.I.M., … & Moorthy, C.V. (2019). Electrochemical corrosion behavior of Sn-0.7 Cu solder alloy with the addition of bismuth and iron. Journal of Alloys and Compounds, 810, 151925. [Google Scholar]
  12. Yadav, S., Yamasani, P., & Kumar, S. (2015). Experimental studies on a micro power generator using thermo-electric modules mounted on a micro-combustor. Energy Conversion and Management, 99, 1–7. [Google Scholar]
  13. Arvidson, K., Cottler‐fox, M.I.C.H.E.L.E., Hammarlund, E., & Friberg, U.L.F. (1987). Cytotoxic effects of cobalt‐chromium alloys on fibroblasts derived from human gingiva. European Journal of Oral Sciences, 95(4), 356–363. [CrossRef] [Google Scholar]
  14. Arora, G.S., Gupta, A., & Saxena, K.K. (2024). Evaluation of mechanical, microstructural, tribological characteristics and cytocompatibility in AZ31 hybrid bio-composite reinforced with tiO2-HAp. Results in Surfaces and Interfaces, 14, 100174. [Google Scholar]
  15. Singh, N., Hameed, P., Ummethala, R., Manivasagam, G., Prashanth, K.G., & Eckert, J. (2020). Selective laser manufacturing of ti-based alloys and composites: Impact of process parameters, application trends, and future prospects. Materials today advances, 8, 100097. [Google Scholar]
  16. Kulkarni, M., Mazare, A., Schmuki, P., Iglič, A., & Seifalian, A. (2014). Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine, 111(615), 111. [Google Scholar]
  17. Gupta, T.K., Budarapu, P.R., Chappidi, S.R., Yb, S.S., Paggi, M., & Bordas, S.P. (2019). Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 26(38), 6851–6877. [CrossRef] [PubMed] [Google Scholar]
  18. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X., … & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686. [CrossRef] [Google Scholar]
  19. Nair, A., Kumanan, S., Prakash, C., Mohan, D.G., Saxena, K.K., Kumar, S., & Kumar, G. (2023). Research developments and technological advancements in conventional and non-conventional machining of superalloys-a review. Journal of Adhesion Science and technology, 37(22), 3053–3124. [Google Scholar]
  20. Awasthi A., Saxena K.K., Dwivedi R.K.. An investigation on classification and characterization of bio materials and additive manufacturing techniques for bioimplants. Mater today Proc. 2021;44:2061–2068. [Google Scholar]
  21. Krishnaja, D., Cheepu, M., & Venkateswarlu, D. (2018, March). A review of research progress on dissimilar laser weld-brazing of automotive applications. In IOP Conference Series: Materials Science and Engineering (Vol. 330, p. 012073). IOP Publishing. [Google Scholar]
  22. Cho, S.C., Small, P.N., Elian, N., & Tarnow, D. (2004). Screw loosening for standard and wide diameter implants in partially edentulous cases: 3-to 7-year longitudinal data. Implant dentistry, 13(3), 245–250. [Google Scholar]
  23. Marti, A. (2000). Cobalt-base alloys used in bone surgery. Injury, 31, D18–D21. [CrossRef] [Google Scholar]
  24. Thakur, A., Bandhu, D., Peshwe, D.R., Mahajan, Y.Y., Saxena, K.K., & Eldin, S.M. (2023). Appearance of reinforcement, interfacial product, heterogeneous nucleant and grain refiner of MgAl2O4 in aluminium metal matrix composites. Journal of Materials Research and technology. [Google Scholar]
  25. Singhal, T.S., Jain, J.K., Kumar, M., Bhojak, V., Saxena, K.K., Buddhi, D., & Prakash, C. (2023). A comprehensive comparative review: welding and additive manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–15. [Google Scholar]
  26. Park, G.E., & Webster, T.J. (2005). A review of nanotechnology for the development of better orthopedic implants. Journal of Biomedical Nanotechnology, 1(1), 18–29. [Google Scholar]
  27. Felton, D.A., Kanoy, B.E., Bayne, S.A., & Wirthman, G.P. (1991). Effect of in vivo crown margin discrepancies on periodontal health. The Journal of prosthetic dentistry, 65(3), 357–364. [Google Scholar]
  28. Reith, G., Schmitz-Greven, V., Hensel, K.O., Schneider, M.M., Tinschmann, T., Bouillon, B., & Probst, C. (2015). Metal implant removal: benefits and drawbacks-a patient survey. BMC surgery, 15, 1–8. [CrossRef] [PubMed] [Google Scholar]
  29. Saxena, K.K., & Awasthi, A. (2020). Novel Additive Manufacturing Processes and techniques in Industry 4.0. In Handbook of Research on Integrating Industry 4.0 in Business and Manufacturing (pp. 439–455). IGI Global. [Google Scholar]
  30. Mabuwa, S., Msomi, V., Mehdi, H., & Saxena, K.K. (2023). Effect of material positioning on Si-rich tIG welded joints of AA6082 and AA8011 by friction stir processing. Journal of Adhesion Science and technology, 37(17), 2484–2502. [Google Scholar]
  31. Dwivedi, S.P., Sharma, S., Krishna, B.V., Sonia, P., Saxena, K.K., Iqbal, A., & Djavanroodi, F. (2023). Effect of the addition of tiB2 with waste glass powder on microstructure, mechanical and physical behavior of PEt-based polymer composite material. Mechanics of Advanced Materials and Structures, 1–10. [Google Scholar]
  32. Kolesky, D.B., Truby, R.L., Gladman, A.S., Busbee, T.A., Homan, K.A., & Lewis, J.A. (2014). 3D bioprinting of vascularized, heterogeneous cell‐laden tissue constructs. Advanced materials, 26(19), 3124–3130. [CrossRef] [PubMed] [Google Scholar]
  33. Kontonasaki, E., Sivropoulou, A., Papadopoulou, L., Garefis, P., Paraskevopoulos, K., & Koidis, P. (2007). Attachment and proliferation of human periodontal ligament fibroblasts on bioactive glass modified ceramics. Journal of oral rehabilitation, 34(1), 57–67. [Google Scholar]
  34. Ganeshkumar, S., Kumar, A., Maniraj, J., Babu, Y.S., Ansu, A.K., Goyal, A., … & Hassan, A.M. (2023). Exploring the potential of nano technology: a assessment of nano-scale multi-layered-composite coatings for cutting tool performance. Arabian Journal of Chemistry, 16(10), 105173. [CrossRef] [Google Scholar]
  35. Hansson, S. (1991). On the role of surface roughness for load bearing bone implants. The retention pctentiai of a micro-pitted surface as a function of pif size, pif shope and pit density (thesis). University of Göteborg. [Google Scholar]
  36. Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1-2), 231–236. [CrossRef] [Google Scholar]
  37. Chatzistavrou, X., Tsigkou, O., Amin, H.D., Paraskevopoulos, K.M., Salih, V., & Boccaccini, A.R. (2012). Sol-gel based fabrication and characterization of new bioactive glass-ceramic composites for dental applications. Journal of the European Ceramic Society, 32(12), 3051–3061. [CrossRef] [Google Scholar]
  38. Jha, P., Shaikshavali, G., Shankar, M.G., Ram, M.D.S., Bandhu, D., Saxena, K.K., … & Agrawal, M.K. (2023). A hybrid ensemble learning model for evaluating the surface roughness of AZ91 alloy during the end milling operation. Surface Review and Letters, 2340001. [Google Scholar]
  39. Perkins, B.L., & Naderi, N. (2016). Suppl-3, M7: carbon nanostructures in bone tissue engineering. The Open Orthopaedics Journal, 10, 877. [Google Scholar]
  40. Pankaj Sonia, Jinesh K. Jain, Naveenkrishna Alla, Manish Gupta, Md Irfanul Haque Siddiqui, Karrar Hazim Salem, Farooq Ahmed & Sherzod Shukhratovich Abdullaev (2023) Friction stir processing of AZ31 alloy to improve the mechanical, biodegradation, and in vitro biocompatible characteristics, Journal of Adhesion Science and technology, DOI: 10.1080/01694243.2023.2283969 [Google Scholar]
  41. P. Sonia, J.K. Jain, K.K. Saxena, J. Lade, V. Malik, and R. Singh, “FABRICAtION AND CHARACtERIZAtION OF MAGNESIUM-BASED Mg-tItANIA SURFACE COMPOSItE FOR BIOIMPLANtS,” Surf. Rev. LetT., vol. 0, no. 0, p. 2340003, DOI: 10.1142/S0218625X23400036. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.