Open Access
Issue
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 01027
Number of page(s) 10
Section Materials Science
DOI https://doi.org/10.1051/e3sconf/202450501027
Published online 25 March 2024
  1. Bianchini R., Fontoura M., Cortez E., et al. Toward ML-centric cloud platforms. Commun ACM. 2020;63:50–59. [Google Scholar]
  2. Poul Raj I.L., Valanarasu S., Hariprasad K., et al. Enhancement of optoelectronic parameters of Nd-doped ZnO nanowires for photodetector applications. Opt Mater (Amst). 2020;109:110396. [Google Scholar]
  3. Mosavi A., Faghan Y., Ghamisi P., et al. Comprehensive review of deep reinforcement learning methods and applications in economics. Mathematics. 2020;8. [Google Scholar]
  4. Kalpana G., Kumar P. V., Aljawarneh, S., et al. Shifted Adaption Homomorphism Encryption for Mobile and Cloud Learning. Comput Electr Eng. 2018;65:178–195. [Google Scholar]
  5. Sworna N.S., Islam AKMM, Shatabda S., et al. Towards development of Iot-ML driven healthcare systems: A survey. J Netw Comput Appl. 2021;196:103244. [Google Scholar]
  6. Grover, T., Pandey, A., Kumari, S.T., Awasthi, A., Singh, B., Dixit, P., … & Saxena, K.K. (2020). Role of titanium in bio implants and additive manufacturing: An overview. Materials today: Proceedings, 26, 3071–3080. [Google Scholar]
  7. Awasthi, A., Saxena, K.K., & Dwivedi, R.K. (2021). An investigation on classification and characterization of bio materials and additive manufacturing techniques for bioimplants. Materials today: Proceedings, 44, 2061–2068. [Google Scholar]
  8. Atchudan R., Jebakumar, Immanuel Edison T.N., Shanmugam, M., et al. Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Phys E Low-dimensional Syst Nanostructures. 2021;126:114417. [Google Scholar]
  9. Kumar P.S.S., Allamraju K.V.. A Review Of Natural Fiber Composites [Jute, Sisal, Kenaf]. Mater today Proc. 2019;18:2556–2562. [Google Scholar]
  10. Piccialli F., Giampaolo F., Prezioso E., et al. Predictive Analytics for Smart Parking: A Deep Learning Approach in Forecasting of Iot Data. ACM trans Internet technol. 2021;21. [Google Scholar]
  11. Vishwanatha, H.M., Saxena, K.K., Pramanik, A., & Behera, A. (2023). Cryo treatment and corrosion studies of nickel-titanium shape-memory alloy. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089231159250. [Google Scholar]
  12. Chandrappa, V., Basavapoornima, C., Kesavulu, C.R., Babu, A.M., Depuru, S.R., & Jayasankar, C.K. (2022). Spectral studies of Dy3+: zincphosphate glasses for white light source emission applications: a comparative study. Journal of Non-Crystalline Solids, 583, 121466. [Google Scholar]
  13. Zetzsche D.A., Buckley R.P., Arner D.W., et al. From Fintech to techFin: the Regulatory Challenges of Data-Driven Finance. SSRN Electron J. 2017; [Google Scholar]
  14. Shamayleh A., Awad M., Farhat J.. Iot Based Predictive Maintenance Management of Medical EquipmenT. J Med SysT. 2020;44. [Google Scholar]
  15. Burstein A.H., Reilly D.T., Martens, M. Aging of bone tissue: mechanical properties. J Bone Jt Surg - Ser A. 1976; [Google Scholar]
  16. Jaffery H.A., Sabri M.F.M., Said S.M., et al. Electrochemical corrosion behavior of Sn-0.7Cu solder alloy with the addition of bismuth and iron. J Alloys Compd. 2019;810:151925. [Google Scholar]
  17. Walke, S., Kale, V.M., Patil, P.P., Giri, J.M., Kumar, H., Kumar, M., & Arun, V. (2023). Effects of alloying element on the mechanical behavior of Mg-MMCs: A review. Materials today: Proceedings. [Google Scholar]
  18. Saxena K.K., Awasthi A.. Novel Additive Manufacturing Processes and techniques in Industry 4.0. 2020. [Google Scholar]
  19. Dhawan A., Gupta N., Goyal R., et al. Evaluation of mechanical properties of concrete manufactured with fly ash, bagasse ash and banana fibre. Mater today Proc. 2021;44:17–22. [Google Scholar]
  20. Mishra, M. Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art review and case studies. J Cult HeriT. 2021;47:227–245. [Google Scholar]
  21. Pragana J.P.M., Sampaio R.F.V., Bragança I.M.F., et al. Hybrid metal additive manufacturing: A state-of-the-art review. Adv. Ind. Manuf. Eng. Elsevier; 2021. p. 100032. [Google Scholar]
  22. Gbara A., Darwich K., Li L., et al. Long-term Results of Jaw Reconstruction With Microsurgical Fibula Grafts and Dental Implants. J Oral Maxillofac Surg. 2007;65:1005–1009. [CrossRef] [Google Scholar]
  23. Newman, S.T., Nassehi, A., Imani-Asrai, R., et al. Energy efficient process planning for CNC machining. CIRP J Manuf Sci technol. 2012;5:127–136. [Google Scholar]
  24. Manglik R.M., Zhang J., Muley A.. Low Reynolds number forced convection in three-dimensional wavy-plate-fin compact channels: Fin density effects. Int J Heat Mass transf. 2005;48:1439–1449. [Google Scholar]
  25. Hm, V., Rao, R.N., Maiya, M., Kumar, P., Gupta, N., Saxena, K.K., & Vijayan, V. (2023). Effects of arc current and travel speed on the processing of stainless steel via wire arc additive manufacturing (WAAM) process. Journal of Adhesion Science and technology, 1–18. [Google Scholar]
  26. Shooshtarian L., Lan D., Taherkordi, A. A Clustering-Based Approach to Efficient Resource Allocation in Fog Computing. Commun Comput Inf Sci. 2019;1080 CCIS:207–224. [Google Scholar]
  27. Zhang R., Shao Z., Lin J.. A review on modelling techniques for formability prediction of sheet metal forming. InT. J. LighT. Mater. Manuf. 2018. [Google Scholar]
  28. Yelamasetti, B.N.S.S., Saxena, K.K., Gupta, N.P.N.K., & Shelare, S.D. (2023). Metallurgical, mechanical and corrosion behavior of Interpulse and pulsed current tIG dissimilar welds of Monel 400 and AISI 316L. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089231216029. [Google Scholar]
  29. Chen J., Chen S., Wang Q., et al. IRAF: A Deep Reinforcement Learning Approach for Collaborative Mobile Edge Computing Iot Networks. IEEE Internet things J. 2019;6:7011–7024. [Google Scholar]
  30. Saxena, A., Saxena, K.K., Singh, B., Rajput, S.K., & Yelamasetti, B. (2023). Study and effect of GtAW parameters on mechanical properties of aluminium dissimilar welded joints: optimization technique. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–11. [Google Scholar]
  31. Bankins S., Formosa P., Griep Y., et al. AI Decision Making with Dignity? Contrasting Workers’ Justice Perceptions of Human and AI Decision Making in a Human Resource Management ContexT. Inf Syst FronT. 2022;24:857–875. [Google Scholar]
  32. Xie H., Zhang L., Xu E., et al. SiAlON-Al2O3 ceramics as potential biomaterials. Ceram InT. 2019;45:16809–16813. [CrossRef] [Google Scholar]
  33. Yadav S., Yamasani P., Kumar S.. Experimental studies on a micro power generator using thermo-electric modules mounted on a micro-combustor. Energy Convers Manag. 2015;99:1–7. [Google Scholar]
  34. Ernst, M., Richards, R.G., & Windolf, M. (2021). Smart implants in fracture care-only buzzword or real opportunity?. Injury, 52, S101–S105. [Google Scholar]
  35. Jha, P., Shaikshavali, G., Shankar, M.G., Ram, M.D.S., Bandhu, D., Saxena, K.K., … & Agrawal, M.K. (2023). A hybrid ensemble learning model for evaluating the surface roughness of AZ91 alloy during the end milling operation. Surface Review and Letters, 2340001. [Google Scholar]
  36. Gupta, T.K., Budarapu, P.R., Chappidi, S.R., Yb, S.S., Paggi, M., & Bordas, S.P. (2019). Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 26(38), 6851–6877. [CrossRef] [PubMed] [Google Scholar]
  37. Singh, L., Yahya, M.M., Singh, B., Sehgal, S., Saxena, K.K., & Mohammed, K.A. (2023). Investigation of the Effects of Overlapping Passes on Friction Stir Processed Aluminum Alloy 5083. Metal Science and Heat treatment, 1–5. [Google Scholar]
  38. Arun, V., Singh, A.K., Shukla, N.K., & Tripathi, D.K. (2016). Design and performance analysis of SOA-MZI based reversible toffoli and irreversible AND logic gates in a single photonic circuiT. Optical and quantum electronics, 48, 1–15. [CrossRef] [Google Scholar]
  39. Chaudhary, N., Dikshit, M.K., Kumar, C.L., Sonia, P., Pathak, V.K., Saxena, K.K., … & Salmaan, N.U. (2023). Sustainable mechanical properties evaluation for graphene reinforced Epoxy/Kevlar fiber using MD simulations. Journal of Experimental Nanoscience, 18(1), 2246662. [CrossRef] [Google Scholar]
  40. Mabuwa, S., & Msomi, V. (2020). Comparative analysis between normal and submerged friction stir processed friction stir welded dissimilar aluminium alloy joints. Journal of Materials Research and technology, 9(5), 9632–9644. [Google Scholar]
  41. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X., … & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686. [CrossRef] [Google Scholar]
  42. Krishnaja, D., Cheepu, M., & Venkateswarlu, D. (2018, March). A review of research progress on dissimilar laser weld-brazing of automotive applications. In IOP Conference Series: Materials Science and Engineering (Vol. 330, p. 012073). IOP Publishing. [Google Scholar]
  43. Mabuwa, S., & Msomi, V. (2019). Effect of friction stir processing on gas tungsten arc-welded and friction stir-welded 5083-H111 aluminium alloy joints. Advances in Materials Science and Engineering, 2019, 1–14. [Google Scholar]
  44. Agarwal, K.M., Tyagi, R.K., Choubey, V., Wahid, M.A., Kapoor, A., & Kumar, A. (2021). Enhancements of mechanical properties of materials through ECAP for high temperature applications. Materials today: Proceedings, 46, 6490–6495. [Google Scholar]
  45. Arora, G.S., Gupta, A., & Saxena, K.K. (2024). Evaluation of mechanical, microstructural, tribological characteristics and cytocompatibility in AZ31 hybrid bio-composite reinforced with tiO2-HAp. Results in Surfaces and Interfaces, 14, 100174. [Google Scholar]
  46. Mabuwa, S., & Msomi, V. (2020). The effect of friction stir processing on the friction stir welded AA1050-H14 and AA6082-t6 joints. Materials today: Proceedings, 26, 193–199. [Google Scholar]
  47. Awasthi, A., Rao, U.S., Saxena, K.K., & Dwivedi, R.K. (2022). Impact of equal channel angular pressing on aluminium alloys: An overview. Materials today: Proceedings, 57, 908–912. [Google Scholar]
  48. Dimiduk, D.M., Holm, E.A., & Niezgoda, S.R. (2018). Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering. Integrating Materials and Manufacturing Innovation, 7, 157–172. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.