Open Access
Issue
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 01035
Number of page(s) 10
Section Materials Science
DOI https://doi.org/10.1051/e3sconf/202450501035
Published online 25 March 2024
  1. Mohammed, K.A., Habieb, A.A., Swary, A.O., Ahilfi, D.N., & Thbayh, D.K. (2020). Effect of Laser Energy on Optical and Morphological Properties of Gold Nanoparticles. Advanced Science, Engineering and Medicine, 12(7), 989–993. [CrossRef] [Google Scholar]
  2. Burda, C., Chen, X., Narayanan, R., & El-Sayed, M.A. (2005). Chemistry and properties of nanocrystals of different shapes. Chemical reviews, 105(4), 1025–1102. [CrossRef] [PubMed] [Google Scholar]
  3. Tessier, P.M., Velev, O.D., Kalambur, A. T., Rabolt, J.F., Lenhoff, A.M., & Kaler, E.W. (2000). Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy. Journal of the American Chemical Society, 122(39), 9554–9555. [CrossRef] [Google Scholar]
  4. Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12(3), 788–800. [Google Scholar]
  5. De Matteis, V., & Rizzello, L. (2020). Noble metals and soft bio-inspired nanoparticles in retinal diseases treatment: A perspective. Cells, 9(3), 679. [CrossRef] [PubMed] [Google Scholar]
  6. Khlebtsov, N.G., & Dykman, L.A. (2010). Optical properties and biomedical applications of plasmonic nanoparticles. Journal of Quantitative Spectroscopy and Radiative transfer, 111(1), 1–35. [Google Scholar]
  7. Mohammed, K.A.; Habieb, A.A.; Soary, A.O. Effect of Particles Diameters on the theoretical and Experimental Surface Plasmon Absorption (SPA) of Gold Nanoparticles Prepared by Laser Ablation Method. Mat Int 2020, 2, 0271–0276. https://doi.org/10.33263/Materials23.271276. [Google Scholar]
  8. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Journal of the Chemical Society, Chemical Communications, (7), 801–802. [CrossRef] [Google Scholar]
  9. Molnár, Z., Bódai, V., Szakacs, G., Erdélyi, B., Fogarassy, Z., Sáfrán, G., & Lagzi, I. (2018). Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Scientific reports, 8(1), 1–12. [CrossRef] [PubMed] [Google Scholar]
  10. Orooji, Y., Jaleh, B., Homayouni, F., Fakhri, P., Kashfi, M., Torkamany, M.J., & Yousefi, A.A. (2020). Laser ablation-assisted synthesis of poly (vinylidene fluoride)/Au nanocomposites: crystalline phase and micromechanical finite element analysis. Polymers, 12(11), 2630. [Google Scholar]
  11. Mishra, R.R., Panda, A., Sahoo, A.K., & Kumar, R. (2022). Research progress on nano-metal matrix composite (NMMC) fabrication method: A comprehensive review. Materials today: Proceedings, 56, 2104–2109. [Google Scholar]
  12. Yassin, A.Y. (2023). Synthesized polymeric nanocomposites with enhanced optical and electrical properties based on gold nanoparticles for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 34(1), 46. [Google Scholar]
  13. Bag, R., Panda, A., Sahoo, A.K., & Kumar, R. (2020). A brief study on effects of nano cutting fluids in hard turning of AISI 4340 steel. Materials today: Proceedings, 26, 3094–3099. [Google Scholar]
  14. Vieira, F.M., Calisto, C.G., & Izumi, C. (2023). Construction of SERS substrates by gold nanoparticles assembly on polymeric matrices. Applied Surface Science, 612, 155818. [CrossRef] [Google Scholar]
  15. Awwad, N.S., Abd E. l-Kader, M.F.H., Ibrahium, H.A., Asnag, G.M., & Morsi, M.A. (2021). Green synthesis of different ratios from bimetallic gold: Silver nanoparticles core@ shell via laser ablation scattered in Chitosan-PVA matrix and its electrical conductivity behavior. Composites Communications, 24, 100678. [Google Scholar]
  16. Salim, K.H., Khudair, H.F., Mohammed, K.A., Zabibah, R.S., Al-Khafaji, M.A., Elayaperumal, M., & Saxena, K.K. (2023). Eco friendly Synthesis of Ag-ZnO Nanocomposite and Its antibacterial activity, photocatalysis toward degradation of (CB) dye and Removal wastewater pollution. International Journal of Nanoscience. [Google Scholar]
  17. Jarad, A.N., Hamood, F.J., Kareem, A.S., Alkhafaji, M.A., Zabibah, R.S., Mohammed, K.A., & Saxena, K.K. (2023). Au Nanoparticles Angered with PVA for Nanocomposites Formation and their Evaluations. International Journal of Nanoscience, 2350021. [Google Scholar]
  18. Zhang, Q., He, L., Rani, K.K., Wu, D., Han, J., Chen, Y., & Su, W. (2021). Colorimetric detection of neomycin sulfate in tilapia based on plasmonic core-shell Au@ PVP nanoparticles. Food Chemistry, 356, 129612. [Google Scholar]
  19. Xiao, C., Chen, S., Zhang, L., Zhou, S., & Wu, W. (2012). One-pot synthesis of responsive catalytic Au@ PVP hybrid nanogels. Chemical Communications, 48(96), 11751–11753. [CrossRef] [PubMed] [Google Scholar]
  20. Alshehri, S.M., Almuqati, T., Almuqati, N., Al-Farraj, E., Alhokbany, N., & Ahamad, T. (2016). Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol. Carbohydrate polymers, 151, 135 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.