Open Access
Issue
E3S Web of Conf.
Volume 508, 2024
International Conference on Green Energy: Intelligent Transport Systems - Clean Energy Transitions (GreenEnergy 2023)
Article Number 03003
Number of page(s) 9
Section IoT, AI and Data Analytics
DOI https://doi.org/10.1051/e3sconf/202450803003
Published online 05 April 2024
  1. Lin W. Y. et al. Robust and accurate curvature estimation using adaptive line integrals // EURASIP Journal on Advances in Signal Processing. – 2010. – Vol. 2010. – P. 1–14. doi:10.1155/2010/240309 [Google Scholar]
  2. Gadermayr M. et al. Shape curvature histogram: A shape feature for celiac disease diagnosis // Medical Computer Vision. Large Data in Medical Imaging: Third International MICCAI Workshop, MCV 2013, Nagoya, Japan, September 26, 2013, Revised Selected Papers 3. – Springer International Publishing, 2014. – P. 175–184. [Google Scholar]
  3. Han J. H., Poston T. Chord-to-point distance accumulation and planar curvature: a new approach to discrete curvature // Pattern Recognition Letters. – 2001. – Vol. 22, №. 10. – P. 1133–1144. [CrossRef] [Google Scholar]
  4. Arica N., Vural F. T. Y. BAS: a perceptual shape descriptor based on the beam angle statistics // Pattern Recognition Letters. – 2003. – Vol. 24, №. 9-10. – P. 1627–1639. [CrossRef] [Google Scholar]
  5. Coeurjolly D., Miguet S., Tougne L. Discrete curvature based on osculating circle estimation // 4-th International Workshop on Visual Form, IWVF4 Capri, Italy, May 28–30, 2001 Proceedings. – Springer Berlin Heidelberg, 2001. – P. 303–312. [Google Scholar]
  6. Cazals F., Pouget M. Estimating differential quantities using polynomial fitting of osculating jets // Computer Aided Geometric Design. – 2005. – Vol. 22, №. 2. – P. 121–146. https://doi.org/10.1016/j.cagd.2004.09.004 [CrossRef] [Google Scholar]
  7. Gao D. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications // Geophysics. – 2013. – Vol. 78. – №. 2. – P. O21–O31. https://doi.org/10.1190/geo2012-0190.1 [Google Scholar]
  8. Chen He X., Yung N. H. C. Corner detector based on global and local curvature properties // Optical Engineering. – 2008. – Vol. 47, №. 5. – P. 057008–057008–12. https://doi.org/10.1117/1.2931681 [CrossRef] [Google Scholar]
  9. Zhang W. et al. Discrete curvature representations for noise robust image corner detection // IEEE Transactions on Image Processing. – 2019. – Vol. 28, №. 9. – P. 4444–4459. doi:10.1109/tip.2019.2910655 [CrossRef] [PubMed] [Google Scholar]
  10. Worring M., Smeulders A. W. M. Digital curvature estimation // CVGIP: Image Understanding. – 1993. – Vol. 58, №. 3. – P. 366–382. https://doi.org/10.1006/ciun.1993.1048 [CrossRef] [Google Scholar]
  11. Tong W. S., Tang C. K. Robust estimation of adaptive tensors of curvature by tensor voting // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2005. – Vol. 27, №. 3. – P. 434–449. [CrossRef] [PubMed] [Google Scholar]
  12. Flynn P. J., Jain A. K. On reliable curvature estimation // CVPR. – 1989. – Vol. 88. – P. 5–9. [Google Scholar]
  13. Trucco E., Fisher R. B. Experiments in curvature-based segmentation of range data // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 1995. – Vol. 17, iss. 2. – P. 177–182. [CrossRef] [Google Scholar]
  14. Magid E., Soldea O., Rivlin E. A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range image data // Computer Vision and Image Understanding. – 2007. – Vol.107, iss. 3. – P. 139–159. https://doi.org/10.1016/j.cviu.2006.09.007 [CrossRef] [Google Scholar]
  15. CEDAR dataset: https://www.kaggle.com/datasets/shreelakshmigp/cedardataset [Google Scholar]
  16. Y. Guerbai, Y. Chibani, and B. Hadjadji, “The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters,” Pattern Recognition, 48 (1), 103–113 (2015). [CrossRef] [Google Scholar]
  17. V.V. Starovoitov, and U.Yu. Akhundjanov, “A new feature for handwritten signature image description based on local binary patterns.” Informatics. 19(3), 62-73 (2022). (In Russ.) https://doi.org/10.37661/1816-0301-2022-19-3-62-73 [CrossRef] [Google Scholar]
  18. V.V. Starovoitov, and U.Yu. Akhundjanov, “A new feature for handwritten signature image description based on local binary patterns.” Informatics. 19(3), 62-73 (2022). (In Russ.) https://doi.org/10.37661/1816-0301-2022-19-3-62-73 [CrossRef] [Google Scholar]
  19. VV Byts’, RM Zulunov. Specification of matrix algebra problems by reduction. Journal of Mathematical Sciences. T. 71, 2719–2726 (1994). [CrossRef] [Google Scholar]
  20. Fazilov, S. K., Mirzaev, N. N., Radjabov, S. S., Dadakhanov, M. K., Asraev, M. A., & Shamsiev, F. M. (2019). State of the art of writer identification. Compusoft, 8(12), 3514-3524. [Google Scholar]
  21. Siddikov, I., Mamasodikova, N., Rayimdjanova, O., Khalmatov, D., Mirzaaxmedova, X. Algorithms for synthesis of a fuzzy control system chemical reactor temperature // CEUR Workshop ProceedingsЭта ссылка отключена., 2021, 2899, страницы 64–70 [Google Scholar]
  22. K.I. Jabborov, A.N. Ulukmuradov, I.D. Yadgarov, N.I. Ibrokhimov. Effect of hydrogenation of carbon atom on its deposition on graphene. Lett. Mater., 2022, 12(1) 27-31 [CrossRef] [Google Scholar]
  23. Rashidov Y. K., Aytmuratov B., Ismailov M. M. Increasing the thermal performance of flat plate solar collectors //AIP Conference Proceedings. – AIP Publishing, 2022. – Т. 2762. – №. 1 [Google Scholar]
  24. Rayimdjanova, O., Iskandarov, U., Ergashev, S., Tillaboev, M. “Practical approach to aspects of operation and practical use of optoelectronic linear transducer of movements of the first hazard category objects” // E3S Web of Conferences, 2023, 452, 01011 [CrossRef] [EDP Sciences] [Google Scholar]
  25. Iskandarov, U., Ismoilov, M., Yuldashev, N. “Develop and usage virtual schemes of remote acoustic laser microphones with visible and invisible waves” // E3S Web of Conferences, 2023, 452, 03008 [CrossRef] [EDP Sciences] [Google Scholar]
  26. Sodiqovna, R. O., & Abdivositovich, T. B. (2022, September). Development Of A Photoelectric Device for Obtaining an Electrostatic Field Under the Influence of Light Currents. In 2022 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-3). IEEE. [Google Scholar]
  27. Ibrokhimov, A., Orzimatov, J., Usmonov, M., Otakulov, B., & Mirzababayeva, S. (2024). Mathematical modeling of particle movement in laminar flow in a pipe. In BIO Web of Conferences (Vol. 84, p. 02026). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  28. Abdulkhaev, Z., Abdujalilova, S., Usmonov, M., Askarov, K., & Nazirova, R. (2024). Determination of the useful working coefficient (UWC) of the heating system. In BIO Web of Conferences (Vol. 84, p. 05040). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  29. Abbasov, Y., Umurzakova, M., & Sharofov, S. (2023). Results of the calculation of the absorber temperature in a flat solar air heater. In E3S Web of Conferences (Vol. 411, p. 01004). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  30. Abbasov, E., Umurzakova, M., & Nigmatov, U. (2010). A way to increase the efficiency of convective heat exchange in the channels of solar water collectors. Applied Solar Energy (19349424), 46(1). [Google Scholar]
  31. Abbasov, E. S., & Umurzakova, M. A. (2009). Hydrodynamics and heat exchange in water suntraps. Applied Solar Energy, 45, 25-27. [CrossRef] [Google Scholar]
  32. Abbasov, E. S., & Umurzakova, M. A. (2008). Dimensional method for investigating convective heat exchange processes in solar collectors. Applied Solar Energy, 44(4), 256 [CrossRef] [Google Scholar]
  33. Yusupov, Y. A., Otaqulov, O. H., Ergashev, S. F., & Kuchkarov, A. A. (2021). Automated Stand for Measuring Thermal and Energy Characteristics of Solar Parabolic Trough Concentrators. Applied Solar Energy, 57, 216-222. [CrossRef] [Google Scholar]
  34. Kuchkarov, A. A., Abdumuminov, A. A., & Abdurakhmanov, A. (2020). Developing a Design of a Composite Linear Fresnel Mirror Concentrating System. Applied Solar Energy, 56, 192-197. [CrossRef] [Google Scholar]
  35. Kuchkarov, A. A., Khaitmukhamedov, A. E., Shukurov, A. O., Dekhkonova, M. K., & Mukhiddinov, M. R. (2020). Calculation of thermal and exergy efficiency of solar power units with linear radiation concentrators. Applied Solar Energy, 56, 42-46. [CrossRef] [Google Scholar]
  36. Abdurakhmanov, A., Kuchkarov, A. A., Mamatkosimov, M. A., Sobirov, Y. B., & Akhadov, J. Z. (2016). Analytical approaches of calculation of the density distribution of radiant flux from the sun for parabolic-cylindrical mirror-concentrating systems. Applied Solar Energy, 52(2), 137. [CrossRef] [Google Scholar]
  37. Kuchkarov, A. A., Kholov, S. R., Abdumuminov, A. A., & Abdurakhmanov, A. A. (2018). Optical energy characteristics of the optimal module of a solar composite parabolic-cylindrical plant. Applied Solar Energy, 54, 293-296. [CrossRef] [Google Scholar]
  38. Marupov, A., Abdukadirova, M., Mirzakarimova, G., & Rasulov, A. (2023). Procedure and method of marking administrative-territorial boundaries on the basis of digital technologies. In E3S Web of Conferences (Vol. 452, p. 03007). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  39. Marupov, A. (2023). Application of GIS technologies to implement environmental monitoring of laboratory studies of soils under power transmission lines in the Southern foothills of Fergana region. In E3S Web of Conferences (Vol. 420, p. 04023). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  40. Eshnazarov, D., Abdukadirova, M., Abdurakhmonov, A., & Yokubov, S. (2023). Describing the administrative border of Koshtepa district on an electronic digital map and creating a web map. In E3S Web of Conferences (Vol. 452, p. 03009). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  41. Musaev, I., Khakimova, K., Nuretdinova, M., Ganiyev, Y., & Ibragimov, J. (2023). Up-to-the-date practices of geodetic measurements for build-up area expansion: a case study from Uzbekistan. In E3S Web of Conferences (Vol. 389, p. 03058). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  42. Khakimova, K., Abdukhalilov, B., Qosimov, L., Abdusalomov, A., & Yokubov, S. (2023). Application of GIS technologies for improving the content of the tourist map of Fergana province, Uzbekistan. In E3S Web of Conferences (Vol. 386). EDP Sciences. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.